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The Brain as an Input-Output Model of the World 

 

Oron Shagrir 

 

My aim is to show that an underlying assumption in computational approaches in cognitive 

and brain sciences is that the brain is a model of the world in the sense that it mirrors 

certain relations in the surrounding world. Elsewhere (Shagrir 2012) I argue that the notion 

of internal model is quite central in computational cognitive neuroscience. The focus here is 

on a weaker form of modelling, called input-output modelling, in which the input-output 

function of a nervous system mirrors a certain relation in the target domain. I argue that the 

input-output modelling assumption is entrenched in computational approaches, playing 

distinct methodological and explanatory roles in cognitive neuroscience. Methodologically, 

input-output modelling serves to discover the computed function from environmental cues. 

Explanatorily, input-output modelling serves to account for the appropriateness of the 

computed function to the explanandum information-processing task.  

 

The paper proceeds as follows: I start with some general discussion about modelling (section 

1). I next present three examples in which the theoreticians assume (or so I argue) input-

output modelling (section 2). Next, I argue that input-output modelling plays a distinct 

theoretical role in cognitive neuroscience. It often plays a methodological role in discovering 

the internal computed function (section 3), and it even more often plays an explanatory role 

in accounting for the appropriateness of the computed function to the explanandum 

cognitive task (section 4). I finally compare the modelling approach with mechanistic 

explanations (section 5) and with interpretative models, or I-models (section 6).   

  

At the outset, I would like to make clear what the paper is and is not about. When talking 

about modelling in cognitive neuroscience, it is crucial to distinguish between the claim that 

scientists use models to study, simulate and explain the brain and the claim that the brain 

itself is a model of the world. According to the first claim, the brain is the target domain and, 

as such, it is no different from many other physical and biological systems that scientists 

model. According to the second claim, the brain itself is a modelling system. In this respect 

the brain is distinctive: There are hardly any other natural systems, if any at all, that are 
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models of other domains. Although I will examine several models of the nervous system, the 

aim of the paper does not address the (first) claim about scientific models. The paper is 

about the second claim, namely, that the brain itself is a model of the world. The aim is to 

explicate this second-sense modelling relation, in which the nervous system is a model of 

the world. Obviously, the two claims are related in that computational models of the brain 

depict the brain as a model of the world (or so I argue). My focus, however, is the brain-as-

model-of-the-world view. The "world" – the target domain – is to be understood in a very 

broad sense. It can be part of the immediate environment of the organism, e.g., the visual 

field. But the world can be more distant parts, as well as future, past, and even imaginative 

and counterfactual scenarios. The world can also be some internal bodily or mental states; in 

our main example, the target domain ("world") consists of properties of the eyes.    

 

I should also clarify that the aim of the paper is to not to defend the brain-as-a-model view. I 

am not suggesting here that the view is empirically adequate, nor do I claim that the 

computational examples discussed here are impeccable. The aims are to say what the view 

means, to show its centrality in computational work in cognitive neuroscience, and to 

elucidate its distinct theoretical role in studying the nervous system.  

 

1. Input-output modelling 

 

There is a wealth of literature about models.1 I will take a model to be a representational 

system that preserves patterns of relations in the target, represented, system. By preserving 

patterns of relations I mean that there is an isomorphism – or more realistically something 

less than that – from the representing system onto the target system. Another way to put 

this is to say that the model and the target domains share some structural – formal or 

mathematical – similarities (Swoyer 1991).  

 

A nice example of a model is a family tree (fig. 1). In this tree the lines, arrows, and double 

arrows preserve certain familial relations like being a sibling, being a parent and being 

married. This does not mean, of course, that the relations of the models are exactly similar 

to the familial relations. Hopefully, being married is not exactly the same as being related by 

a double arrow. The similarity is at a higher, structural level, of a mathematical or formal 

similarity. In our case, being married and being related by a double arrow are both 

                                                      
1 See, e.g., Frigg & Hartmann (2017); Weisberg (2013).  
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symmetrical relations. The family tree also exemplifies the main function of models, which is 

surrogative reasoning. What this means is that we use models to reason about the target 

domain; our inferences about the target are made by looking at the model, not at the target. 

We can infer whether John is or is not the grandparent of Mo by looking at the model alone. 

This is made possible precisely because the relations in the model preserve, or mirror, 

relations in the target domain.2 

 

While most people would agree that some amount of structural similarity is necessary for 

modelling, they would also argue that the demand for a full-fledged isomorphism is 

excessive, at least when we talk about concrete models. Most people thus confine the 

modelling requirement to homomorphism, partial isomorphism, or even some weaker 

morphism relations.3 I focus here on input-output modelling, which requires a minimal 

amount of morphism. We will say that a system is an input-output model just in case it 

satisfies the following conditions:  

 

(1) There is a process of the system that transforms input variables to output variables.4  

(2) The input-output function, f, preserves a certain relation, R, in a target domain: 

There is a mapping from the model onto the target domain that maps f to R, x to x, y 

to y,…, such that f(x)=y iff <x,y>R.  

(3) The mapping is a representation relation in that the input and output variables, x 

and y, represent the features, x and y, in the target domain.  

 

My focus here is condition (2), namely, showing that an underlying assumption in 

computational work in cognitive neuroscience is that the nervous system satisfies (2). As for 

condition (1), it is certainly not true that all brain activity is described in terms of input-

output processes; there are for instance endogenous neural mechanisms (Bechtel 2012). But 

it is not controversial that broadly speaking much of brain activity is couched in terms of 

input-output processes. I will simply focus here on the latter processes. As for (3), it is 

certainly controversial whether the nervous system "really" represents. Scientists describe 

                                                      
2 See Swoyer (1991) for a general discussion about the relation between modelling and surrogative 
reasoning. See Grush (2004) for a discussion about modelling and surrogative reasoning in the brain.  
3 Less-than-isomorphism characterizations are in terms of partial isomorphism (French and Ladyman 
1999; Da Costa and French 2003), homomorphism (Bartels 2006), and similarity (Giere 2004). 
4 The inputs and outputs need not be peripheral to the brain. In some examples discussed below we 
talk about sub-systems whose inputs are received and/or their outputs are projected to other parts of 
the nervous system. The inputs and outputs are very often (magnitude) values of certain properties 
such as voltages.  
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the nervous system as representing, carrying information about, or encoding values, 

properties and objects in the world. Often, these notions refer to some causal-based 

relations, and then the controversy is whether these causal-based relations amount to 

representations (e.g., Ramsey 2007). I will not get into this controversy. I will take it that (3) 

is satisfied when the scientists describe the nervous system as representing (which often 

points to some causally-based relation). My contention is that scientists often assume that 

the brain is a certain kind of representational system, namely, that it is a system that bears 

morphism relations to the target world (condition (2).  

 

A few words about condition (2): Throughout the paper I will use the italicized symbols such 

as x and y to signify some properties of the representing system, and underlined italicized 

symbols such as x and y, to signify properties in the target domain. The relations f and R in 

the condition signify some physical relations in the representing and target domain 

(respectively). The condition amounts to saying that there is a similarity here in the more 

abstract, e.g., formal, level. Some might say that at the more abstract level, f and R are 

similar formal relations; for example, that both are mathematical integration. One way or 

another, this similarity should be taken with a grain of salt. Given that we are talking here 

about domains – both the models and their targets – that are biological and physical 

systems, these similarity relations involve a vast amount of approximation and idealization.  

 

Cummins (1989) presents a somewhat similar notion, of input-output representation, in his 

famous Tower-Bridge diagram (fig. 2).5 Ramsey further introduces the notion of an internal 

model that is often associated with the term structural representation or S-representation 

(Swoyer 1991; Ramsey 2007). These authors, however, aim to account for the notion of 

representation, and specifically mental or cognitive representation. They make the further 

claim that morphism (or a sufficient amount of it), perhaps with some other conditions, is 

constitutive for being a representation.6 A well-known argument against the sufficiency of 

isomorphism is that a system that is isomorphic to one target domain is immediately 

                                                      
5 The term input-output representation is coined by Ramsey (2007: 68-77), who associates it with task 
analysis. 
6 See also Gallistel and King: "Representations are functioning homomorphisms. They require 
structure-preserving mappings (homomorphisms) from states of the world (the represented system) 
to symbols in the brain (the representing system). These mappings preserve aspects of the formal 
structure of the world" (2009: x). 



5 
 

isomorphic to many other target domains without representing or modelling them; 

relatedly, isomorphism is a symmetric relation whereas representing and modelling are not.7  

 

As implied above, this paper is not in the business of analyzing the relations between 

morphism, representing and modelling. In particular, I do not argue that morphism is 

necessary and/or sufficient for representing. Nor do I argue for the satisfaction of condition 

(3) above, namely, that the brain is a representational system. I will thus refrain from using 

the terms structural representation and input-output representation, which are often 

accompanied by the philosophical baggage that morphism is necessary and/or sufficient for 

being representation. My claim is that much of the computational work in cognitive 

neuroscience assumes that the nervous system is morphic to the world, in the sense of 

condition (2). And given that this work also describes the brain as representing, carrying 

information about, or encoding, we can say that it assumes that the brain is a model of the 

world.  

 

There are many philosophers and scientists who advance claims about the nervous or 

cognitive system modelling the world. Cummins (1989), Ramsey (2007) and Gallistel and 

King (2009) associate this modelling idea with more classical theories of cognition. Others 

note that the notion of a model is central in non-classical theories as well (e.g., Eliasmith and 

Anderson 2003; Grush 2004; Ryder 2004; Churchland 2007; O'Brien and Opie 2009; Shagrir 

2012). Perhaps the best-known example of a model is the cognitive maps in the 

hippocampus of rats, humans and other mammals and animals. These maps, which consist 

of place cells, are used for navigation and spatial processing (O'Keefe and Nadel 1978).  The 

idea that the brain (or mind) is a model of the world is also pivotal in Bayesian approaches to 

cognition.8 Though it is questionable that they all use the same notion of a model, most of 

these scientist and philosophers pose internal models, in which some of the internal 

relations within the system also preserve relations in the target domain. Posing these 

models serves to explain certain cognitive phenomena such as motor control.  

 

                                                      
7 See, e.g., Suárez (2010).  
8 Thus Griffith, Kemp and Tenenbaum (2008) say that the big computational question that underlies 
the Bayesian approach is "How does the mind build rich, abstract, veridical models of the world given 
only the sparse and noisy data that we observe through our senses?". See also Clark (2015), who 
further emphasizes the central role of generative models in the hypothesis that the brain is a 
prediction machine.   
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My claim here is that a far more widespread assumption is that the nervous system models 

the world in the weaker sense of input-output modelling. This assumption is found in many 

cases in which no internal models are posited. Moreover, these input-output morphism 

relations play a distinct theoretical – both explanatory and methodological – role in 

computational work in cognitive neuroscience. My aim here is to exemplify this role, which 

is not emphasized enough by theoreticians and is often ignored by philosophers.  

 

2. Three examples  

 

Fodor (1994) and others (Haugeland 1981; Pylyshyn 1984) stress the fact that a digital 

computer (or a Turing machine) has the ability to support processes that are truth-

preserving. This means that we can implement in these systems inference ("syntactic") rules 

that mirror semantic relations such as logical validity. Taking the inputs and outputs to be 

symbolic expressions (say, the input is a set of sentences  and the output is a sentence p), 

the "inner" input-output function, which is the inferential relation from  to p, mirrors the 

extensional semantic relations; in other words,  ⊢ p iff  ⊨ p:   

Well, as Turing famously pointed out, if you have a device whose operations are 
transformations of symbols, and whose state changes are driven by the syntactic 
properties of the symbols that it transforms, it is possible to arrange things so that, 
in a pretty striking variety of cases, the device reliably transforms true input symbols 
into output symbols that are also true (Fodor 1994: 9). 

 

Cummins (1989) and Ramsey (2007) associate input-output modelling with classical theories 

of cognition. But as I will show below, the input-output modelling occurs also in "non-

classical" theories where the content of the representations is often non-propositional, and 

so the input-output relations are not truth-preserving. Nevertheless the input-output 

relations preserve relations in the target system in the sense of morphism stated above.9 In 

what follows, I describe three non-classical cases of input-output modelling in cognitive 

neuroscience.  

 

The neural integrator in the oculomotor system. The oculomotor system controls eye 

movements. There are several types of eye movement. Gaze stabilization movements 

stabilize the visual world on the retina when the head/body is moving. The vestibulo-ocular 

reflex (VOR) keeps the visual world stable on the retina when the head is moving. The opto-

kinetic reflex stabilizes the visual world when the head is stationary (e.g., when one is 

                                                      
9 We can say that truth-preserving is just a special case of the morphism relation. 
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looking out from a train's window). Gaze-aligning movements include voluntary and 

reflexive saccades and smooth pursuit movements that allow one to track a moving target 

(Glimcher 1999; Leigh and Zee 2006). Our focus is a sub-network of the oculomotor system 

called the neural integrator. It receives as inputs neural signals that encode velocity and 

transform them to signals that encode position. The neural integrator converts eye-velocity 

inputs into eye-position outputs and thus enables the oculomotor system to move the eyes 

to the right position (Robinson 1989; Seung 1998; Eliasmith and Anderson 2003; Leigh and 

Zee 2006).  

 

Take vestibular movements, where the eyes are moved in the same velocity as, and opposite 

direction to, head movements. A wealth of experimental evidence from the 1960s onward 

indicates that the vestibulo-ocular system determine the new eye position on the basis of 

inertial velocity information transduced through the canals behind our ears (the semicircular 

canals). In cats, monkeys and goldfish, the network that computes horizontal eye 

movements appears to be localized in two brainstem nuclei, the nucleus 

prepositushypoglossi (NPH) and the medial vestibular nucleus (MVN).10 Robinson and others 

infer that this velocity-to-position function is performed by an integrator network (I discuss 

the logic behind this inference in section 3). Thus Robinson writes:  

That there is indeed a second integrator is without doubt, since single unit studies in 
the vestibular and abducens nuclei show that the firing of units in the vestibular 
nuclei are in fact proportional to head velocity (over the bandwidth mentioned) and 
single units in the abducens nuclei increase their rate of firing in a manner 
proportional to eye position during the slow phase of nystagmus for which the 
lateral rectus is an agonist (1968: 1041) 

  

Robinson (1989; Cannon and Robinson 1987) also hypothesizes that the same neural 

integrator is used for vestibular, optokinetic, saccadic and pursuit movements (fig. 3).11 The 

inputs arrive from different fibers coding vestibular, optokinetic, saccadic and pursuit 

velocity. The integrator system produces eye-position codes by computing mathematical 

integration over these eye-velocity encoded inputs.  On figure 3, the eye-velocity codes, Ė, 

are projected directly to the motoneurons that have to produce velocity commands in order 

to move the eyes in the right speed. But the eye-velocity codes, Ė, are also projected to the 

neural integrator that produces position codes, E. The latter eye-position codes are further 

projected to the motoneurons for position commands.  

 

                                                      
10  See the reviews by Robinson (1968; 1989) and the one by Leigh and Zee (2006) 
11 See also Goldman et al. (2002). 
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Crucially, mathematical integration characterizes operations performed in two very different 

places. One is in the neural representing system, namely, the neural integrator. It performs 

integration on the neural inputs to generate neural commands. This is the reason that the 

system is known as an integrator. Another and very different place, however, is in the target 

domain being represented, in our case the eyes. The relation between position and velocity 

of the eye can be described in terms of integration too! The distance between the previous 

and current positions of the eye is determined by integrating over its velocity with respect to 

time. So what we have here is input-output modelling. The input-output function of the 

representing sensory-motor neural system (the integrator) mirrors or preserves a certain 

relation in the target domain, namely, the distances between two successive eye positions. 

By computing integration, the neural function mirrors, reflects or preserves the integration 

relation between eye velocity and eye positions.12  

 

We can describe this morphism relation between the representing neural system and the 

represented target domain (the eyes and their properties) in the framework of the Tower-

bridge picture (fig. 4). The lower span describes a causal process in the neural system (i.e., in 

the neural integrator) that transforms input values, Ė, that code eye velocity, Ė, to output 

values, E, that code eye position, E.13 The computed function is mathematical integration, 

namely, the values E, are the result of mathematical integration over Ė with respect to time. 

The upper span describes a certain relation in the target domain, namely, the eyes. The new 

position (which is the distance from the previous position), E, is also a result of mathematical 

integration over the velocity, Ė, with respect to time. Thus the mapping relation, I, which 

maps the input values, Ė, to the encoded velocity values, Ė, and the output values, E, to the 

encoded distance values, E, is a morphism relation.    

 

Path integration. Our neural integrator is by no means unique. Our brain computes 

mathematical integration to solve other problems as well. Homing is the ability of animals 

and humans to return to their departure point. Animals use external cues – environmental 

                                                      
12 To keep things simpler, I will use here the terms distance and position interchangeably. New 
(horizontal) position is evaluated on the basis of the distance from the previous position.  
13 Note that in figure 3 the term E stands for both the representing (output) neural activity and the 
represented eye position. Similarly the term Ė stands for both the representing (input) neural activity 
and the represented eye velocity. This presentation is customary in neuroscience. This sort of 
presentation underscores (again) the modelling assumption, as it is apparent that the integration 
relation holds in both representing and represented domains.     
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stimuli and events – to navigate back home.14 But experimental results show that homing 

occurs even when all the external cues are removed. Cues about initial reference and self-

motion suffice to calculate the animal's relative spatial location; this phenomenon is called 

path integration.15 The input of the calculation is angular velocity signals, which are provided 

by the vestibular or other systems. In this case, there might not be a specific neural sub-

system that computes integration. Nevertheless, scientists take it for granted that 

integration must occur within the navigational system even if it is spread over different parts 

of the system.16 This clearly indicates that scientists assume input-output modelling. They 

assume that the nervous system computes (path) integration – which mirrors the velocity-

position relation of the locomotion – to keep track of the relative position of the animal. 

 

In their review paper Etienne and Jeffery (2004) describe the information-processing 

function as follows:  

How is information about angular motion processed? Recently it has been found 
that cells in the dorsal tegmentum code for angular velocity (Sharp et al., 2001; 
Bassett and Taube, 2001), information they receive from the semicircular canals via 
the vestibular nuclei. The picture that seems to be emerging is that information 
about angular acceleration in the horizontal plane is collected and converted to an 
angular velocity signal by the semicircular canals, then passed on to the dorsal 
tegmentum and integrated again on its way through the mammillary nuclei and 
thalamus (Bassett and Taube, 2001). This provides an angular distance measure that 
updates the head direction signal appropriately (p. 183). 

 

Etienne and Jeffery describe here a process with two integration steps. The inputs to the 

vestibular system are signals of angular acceleration; these are converted to angular velocity 

signals (first integral). The latter signals are then converted again into the angular distance 

measure (second integral). The authors describe here a double-mirroring process. In the first 

step, the nervous system converts input signals that encode acceleration to output signals 

that encode velocity by computing mathematical integration. This input-output function 

mirrors the acceleration-velocity relation, which is of mathematical integration. In the 

second step, the nervous system converts input signals that encode velocity (these are the 

outputs of the first step in the process) to output signals that encode position, by computing 

mathematical integration. This input-output function mirrors the velocity-position relation, 

                                                      
14 This ability is achieved by different animals. A well-known example is the desert ant (Cataglyphis 
fortis) that returns home after an outward travel of hundreds of meters. 
15 See Mittelstaedt & Mittelstaedt (1982), Collett & Collett (2000), Etienne & Jeffery (2004), Conklin & 
Eliasmith (2005), McNaughton et al. (2006) and Gallistel and King (2009).  
16 It has been more recently suggested that path integration in rats is computed by the grid cells 
located in the dorsolateral medial entorhinal cortex (dMEC) (Hafting et al. 2005).  
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which is of mathematical integration too. Taken together, the overall input-output function 

of the double integral mirrors the acceleration-position relation, and this function consists of 

a sequence of two input-output integration functions, the first mirrors the acceleration-

velocity relation whereas the second mirrors the velocity-position relation.  

 

Locating targets in head-centered coordinates. Changing reference or coordinate frames is 

central to many visuo-motor tasks. Andersen et al. (1985) argue that the posterior parietal 

cortex (PPC) of macaque monkeys is home for the information-processing task of relocating 

a target in body-centered or head-centered coordinates. Experimental results indicate that 

that the PPC includes three types of cells: (1) Cells that respond to eye position only (15% of 

the sampled cells); (2) Cells that are not sensitive to eye orientation (21%), but have an 

activity field in retinotopic coordinates; (3) Cells that combine information from retinotopic 

coordinates with information about eye orientation (57%).  

 

Zipser and Andersen (1988) hypothesized that the PPC combines retinotopic and extraretinal 

(eye-orientation) signals in order to compute target location in head-centered coordinates. 

They trained a neural network with the aim of simulating this computation (fig. 5). They used 

a three-layer network in which the two sets of input units model the behavior of the first 

two groups of cells, (1) and (2). The input layer projects to a layer of hidden units, which 

aims to model the activity of the third group of cells, (3). The output units encode the 

target's position in head-centered coordinates; cells with this property were not found in the 

PPC. Zipser and Andersen's impressive result is that the activity of the hidden units, after the 

training period, is very similar to the response properties of the third-group cells that 

combine information about eye orientation and the target's retinotopic location. Given this 

result, Zipser and Andersen hypothesized that there are head-centered target-location cells 

somewhere in the brain, cells that are the correspondents of the output units on the 

network model. 

 

Rick Grush (2001), who analyzed this model, refers to the computations by the third-group 

PPC cells as follows: "We can suppose that the function computed by an idealized posterior 

parietal neuron is something like f = (e-eP)σ(r-ri)" (p. 161). He also notes, however, that this 

mathematical equation applies to two different relations. It refers to the neural relation 

between the two groups of "input" PPC cells. The activity of the "output" PPC cells (group 

(3)) is a multiplication of the activity of the groups (1) and (2). But the mathematical 



11 
 

equation also refers to some complex relations between what is being represented. What is 

being represented by the output, which is the "stimulus distance from preferred direction 

relative to the head" (p. 161) is a multiplication of the properties encoded by the inputs, 

namely, the difference between actual and preferred eye orientation (e-eP) and (gaussian of) 

the distance from the retinal location of stimulation from the receptive field (σ(r-ri)). So we 

see again that there is a morphism relation between the nervous system and the world. The 

input-output function (of multiplication) preserves a pattern of relation – between eye 

orientation and stimulus retinotopic location – that can also be described in terms of 

multiplication.  

 

To sum up, we looked at three central works in computational neuroscience and saw that in 

all of them the nervous system is described as an input-output model of a target domain. In 

some cases, the mirroring is more apparent, whereas in other cases, it takes some effort to 

make it explicit. In yet other cases, it might not be explicated at all. Can we generalize from 

three examples to computational theories in cognitive neuroscience more generally? I 

cannot demonstrate that the input-output modelling assumption is held everywhere, but I 

think that it is very widespread and very central in computational theories of cognition. In 

what follows I will support this claim by showing that the morphism relation plays a key 

theoretical role – both methodological and explanatory – in cognitive neuroscience. 

   

3. Methodological role 

 

Input-output modelling plays an important methodological role in discovering the input-

output function that the nervous system computes. In many cases, environmental cues are 

used to infer the computed function. Input-output modelling has a key role in this inference. 

Consider our oculomotor system. Scientists discovered that the inputs to the system are 

velocity signals. They also hypothesized that these signals are translated to position signals 

that are crucial to move the eyes to new positions. Assuming that the velocity-position 

relation is that of integration, they inferred that there is a sub-system that performs this 

transformation by computing integration. They thus called the system the neural integrator.  

 

We can put the inference, somewhat crudely, as follows:  

• Electrophysiological experiments show that input cells encode eye velocity. Other 
(output) cells encode eye position.  
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• The eye’s velocity-position relation, in the target domain, is that of mathematical 
integration.  

• Therefore: The input-output function computed by the neural system is integration. 
 

But one can notice that the conclusion does not follow from the two premises. Why infer 

that the inner function is that of integration from the premise that the outer function is that 

of integration? The inference becomes valid if we also assume that the (inner) input-output 

function mirrors the velocity-position relation. When making the additional (third) premise 

the argument looks as follows:  

• Electrophysiological experiments show that input cells encode eye velocity. Other 
(output) cells encode eye position.  

• The eye’s velocity-position relation, in the target domain, is that of mathematical 
integration.  

• The computed input-output function mirrors the eye’s velocity-position relation.  
• Therefore: The input-output function computed by the neural system is integration. 

 

The advantage of this methodology is that we can learn about the inner function of the 

nervous system, which is often hidden and hard to decipher, from the outer function that is 

often apparent. This is not the end of the scientific investigation, of course. Further studies 

are conducted in order to confirm the conclusion and to locate the integrator in the nervous 

system. More studies aim to characterize how the system performs integration, namely, the 

mechanisms that conduct the input-output transformation. The important moral, however, 

is that the input-output modelling assumption is entrenched in cognitive neuroscience. 

Theoreticians like Robinson (1989), Seung (1998) and many others are deeply convinced that 

there must be an "integrator" within the oculomotor system that mirrors the velocity-

position relation. They take it to be obvious that if the outer relation between the 

represented entities is that of integration, the nervous system somewhere mirrors this 

relation by computing integration too.  

 

The same goes for path integration. In the paragraph quoted above, Etienne and Jeffery take 

it as obvious that the computation of input signals that encode acceleration to output signals 

that encode velocity is that of integration. They assume, in other words, that the relevant 

computation mirrors the acceleration-velocity relation and, hence, must be integration. They 

make the same assumption about the second integral. They take it as obvious that the 

computation of input signals that encode velocity to output signals that encode position is 

that of integration. They infer, in other words, that the nervous system must compute 

double-integral. This inference – from outer relation to inner function – is valid under the 
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assumption that the nervous system is an input-output model of the animal's movement. 

The assumption, more precisely, is that the overall input-output function of double integral 

mirrors the acceleration-position relation, and that this function consists of a sequence of 

two input-output integration functions – the first mirrors the acceleration-velocity relation 

whereas the second mirrors the velocity-position relation. Without this assumption Etienne 

and Jeffery cannot reach their conclusion that the system computes double-integration. 

Again, this assumption of input-output modelling is not made explicitly. It is an implicit 

assumption about our brain-world relations that underlies the scientific investigation.    

 

We see, then, that the methodology of discovering the input-output function from outer 

relations in the target system is fairly common in cognitive neuroscience. But it is certainly 

not the only way to discover the computed function. When scientists don't know or are 

unsure about the outer relation, they cannot infer about the inner function and they thus 

use different methodologies to discover the inner function. Thus in Zipser and Andersen 

(1988), we do not see a progression from the outer function to the inner function. The fact 

that the input-output function in the nervous system – (1) + (2)  (3) – is that of 

multiplication is discovered through the training of the (artificial) neural network that 

simulates the (real) neural computation. The modelling relation between the inner and 

outer relation is featured only later, in the analysis of the neural network. Zipser and 

Andersen might have assumed that the computation from the first two groups of cells to the 

third – (1) + (2)  (3) – mirrors some relation between the represented items. In this 

respect, the input-output modelling assumption is also featured in their work. Nevertheless, 

they did not know the exact nature of the mirrored relation and, hence, of the computation. 

They thus trained the network to find the input-output function instead.   

 

4. Explanatory role 

 

On the explanatory side, input-output modelling serves to address certain why questions. 

The question at focus is why a given mathematical function is relevant to, or appropriate for, 

the explanandum cognitive task. Consider our neural integrator. Its task is to produce codes 

of eye position ("output") from codes of eye velocity ("input"). The system accomplishes the 

task by computing mathematical integration. The question is: Why does computing 

integration lead to codes of eye position? To see the force of this question we can contrast 

integration with other mathematical functions. We can then ask: Why does the nervous 
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system compute integration rather than other mathematical functions – say, multiplication, 

exponentiation, or factorization – to produce codes of eye position? What makes integration 

appropriate for producing eye-position codes?  

 

Inner mechanisms do not provide an answer to this question. They can certainly answer the 

question of how the function is being computed. Specifying the algorithm tells us how the 

input values are mapped to output values, and specifying the underlying neural structures 

tells us how the neural mechanism enables this computation. But the why-question is not 

about the inner mechanisms that give to the input-output function but about the brain-

world relations. The question is about the relations between the inner (computed) function 

and the information-processing task that is defined, at least partly, by the target system, 

e.g., properties of the eyes (in controlling eye movement). If you remove the neural 

integrator – with the same algorithmic and neural mechanisms – to a very different 

environment, one in which the relations between the velocity and position are very 

different, then computing integration might no longer end up with codes of eye position. 

These considerations show that the why-question applies equally well to algorithmic and 

neural mechanisms. The question is why these algorithmic and neural mechanisms produce 

the explanandum cognitive phenomenon. After all, when changing the environment, the 

very same algorithmic and neural mechanisms no longer produce, hence cannot account for, 

the explanandum cognitive phenomenon. 

 

Input-output modelling provides an answer to this why question. The neural network 

computes integration because integration preserves the velocity-position relation, namely, 

the (integration) relation between eye movement and eye position in the target domain. 

Factorizing numbers would not result in moving the eyes to the right place precisely because 

it does not preserve relations in the target domain that are relevant to eye movements. The 

same goes for multiplication, exponentiation and many other functions. Integration, 

however, is appropriate for the task: When you compute integration over eye-velocity 

encoded inputs, you mirror the integration relation between velocity and position; hence, 

you output representations of a new eye position.  

 

Woodward (2003) famously proposes that causal information is explanatory by virtue of 

allowing answering what-if-things-had-been-different questions. Others have recently 

suggested that such information is explanatory even if it is not causal (Chirimuuta 2014; 
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Rusanen & Lappi 2016). Input-output modelling answers relevant what-if-things-had-been-

different questions. We can see, for example, that if we intervene in input-output modelling, 

then computing integration is no longer appropriate for producing codes of eye position. We 

can interfere in input-output modelling, either by changing the inner input-output function 

or by changing the velocity-position relation. In neither case does the system any longer 

produce codes of eye position:  

  

• If the system had not computed integration (but rather exponentiation), the system 
would not have produced codes of eye position. 

• If the world had changed so that the eye’s velocity-position relation were not 
integration (but exponentiation), the system (when computing integration) would 
not have produced codes of eye position.  

  

Let me be a bit more precise about the nature of the explanandum and the structure of 

modelling explanations. Another way to present the explanandum why-question is as 

follows: The computation starts with an input neural value Ė that encodes some distal 

feature Ė, i.e., eye velocity. It computes a certain function f, i.e., mathematical integration, 

whose output is another neural value, E, that encodes another distal feature E, e.g., eye 

position. The explanandum question is why this computation (e.g., integration), which starts 

from neural values that encode eye velocity, terminates in neural values that encode eye 

position.  

 

To put it succinctly, the given premises are:  

(P1) I(Ė) = Ė (the neural activity Ė encodes Ė).  

(P2) f(Ė) = E (f maps input neural values Ė to output neural values E). 

And the conclusion is:  

       (C)  I(E) = E.  

The question, when put this way, is about the inference from (P1) and (P2) to (C). The 

answer is in no way trivial. If we change the environment, the same computation, f, which 

starts from the same velocity-coded neural input values, Ė, will still terminate with the same 

neural output values E, but E might no longer encode eye position or anything at all. Why, 

then, does computing f (i.e., integration) over neural input values, E, that encode eye 

velocity end up with neural codes of eye position?  
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Input-output modelling asserts that, at least in our world, the input-output function mirrors 

the velocity-position relation. We can formulate this assertion in two assumptions. One is 

that the velocity-position relation, in the abstract, is that of mathematical integration too:  

(P3) f(Ė) = E (the integration on velocity values, with respect to time, yields position 

values).  

(P4) f(I(Ė)) = I(E).     

(P3) asserts that there is an input-output morphism between the modelling nervous system 

and the target eyes. This is in parallel to the second condition in the characterization of 

input-output modelling (section 1). The condition was that f(x)=y iff <x,y>R, where f is the 

input-output function and R is the mirrored relation. This is tantamount to the claim that the 

two relations are structurally, e.g., mathematically, similar, namely, that both relations are 

characterized, in the abstract, by the mathematical function f (i.e., integration), which is 

stated by (P2) and (P3). (P4) is parallel to the third condition in the characterization of input-

output modelling. The third condition states that the morphism relation coincides with the 

representation (or coding) relation, I, which means that f(I(Ė)) = I(E).     

  

From premises (P1)-(P4), we can reach the conclusion (C). Given that I(Ė)= Ė (from (P1)) and 

given that f(Ė)=E (from (P3)), we can infer, from (P4), that E = I(E), which is in fact the 

conclusion, (C).  

 

In sum, I have argued that input-output modelling plays a role in explaining why a computed 

function is appropriate for the explanandum cognitive task. The appropriateness question 

naturally arises when we describe the nervous system as an information-processing system. 

The input-output modelling provides a simple answer to this question in relating the 

computed function to the target domain. In the last two sections I compare the modelling 

explanations with mechanistic (section 5) and optimality (section 6) explanations.   

 

5. Mechanistic explanations 

 

The mechanistic approach to explanation has been widely advocated in recent years, 

especially in the biological and cognitive sciences (Bechtel and Richardson, 1993; Machamer, 

Darden and Craver, 2000; Glennan, 2002). According to one characterization, “Mechanisms 

are entities and activities organized such that they are productive of regular changes from 

start or set-up to finish or termination conditions” (Machamer et al. 2000: 3), and 
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mechanistic explanations describe the aspects of the mechanisms that are relevant to 

producing the (explanandum) phenomenon. Furthermore, it has been argued that 

computational models and explanations in cognitive neuroscience are mechanistic too. 

David Kaplan, for example, argues that "computational models in this domain 

[computational neuroscience] possess explanatory force to the extent that they describe the 

mechanisms responsible for producing a given phenomenon—paralleling how other 

mechanistic models explain" (2011: 339).17 

 

I would like to argue that the modelling explanations outlined above are not mechanistic 

explanations. Whether this claim conflicts with the mechanistic framework largely depends 

on how strongly we interpret the claims about mechanistic explanations. Proponents of the 

mechanistic framework recently emphasized that they do not insist that all scientific 

explanations must be mechanistic (Craver 2016; Kaplan 2017).18 And they can certainly 

concede that some explanations of cognitive phenomena have non-mechanistic, e.g., 

modelling, components. Given this understanding, there is no conflict between modelling 

and mechanistic explanations.19  

 

Why are modelling explanations not mechanistic? For one thing, they are not 

decompositional: Explaining the appropriateness of the computed function to the cognitive 

task does not involve decomposition. The explanation does not decompose the input-output 

function into its constituents. It rather refers to the relations between the inner mechanisms 

and environmental features. Moreover, these relations and features are not necessarily 

causal. The crucial premise is a morphism relation between the inner input-output function 

and an outer relation in the target system, whereas the outer relation need not be causal 

(e.g., velocity-position relation). Another premise in the explanation is the encoding or 

representation relation that might not be fully explicated in mechanistic terms.  

 

                                                      
17 See also Kaplan and Craver (2011), Piccinini and Craver (2011), Miłkowski (2013) and Boone and 
Piccinini (2016).  
18 They also point out that a "full-blown" mechanistic explanation need not specify the entire 
properties of the mechanism. It should specify the entire properties that are relevant to the 
explanandum phenomenon; in some cases (e.g., computational explanations) these properties might 
all be abstract (e.g., medium-independent) properties (Boone and Piccinini 2016).    
19 There is tension, however, about what counts as a computational explanation. Kaplan seems to 
claim that computational explanations in neuroscience are adequate to the extent that they describe 
relevant mechanisms (see also Piccinini 2015; Miłkowski 2013). We suggest that computational 
explanations of information-processing phenomena also involve a modelling, non-mechanistic, 
component (Bechtel and Shagrir 2015; Shagrir and Bechtel 2017).  
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Someone might say that the modelling explanation is a sketch of mechanism. A sketch is a 

description of a mechanism in which some relevant structural properties are missing. Once 

these missing properties are filled in, the description turns into “a full-blown mechanistic 

explanation”; the sketches themselves can be thus seen as “elliptical or incomplete 

mechanistic explanations” (Piccinini and Craver 2011: 284). They are a guide or a first step 

towards the full-blown mechanistic explanations. In replying, I want to emphasize that I do 

not deny that the modelling relations are implemented by mechanisms; this, however, does 

not make modelling explanations sketches, as long as the missing implementational details 

are not relevant to the explanandum phenomena (Shapiro 2016). I also do not deny that the 

mechanisms that underlie the computed function – the algorithmic and perhaps even the 

neuronal – are part of the complete explanation of the cognitive phenomenon. These 

implementational details, however, are not essential to addressing the why question, of why 

the system computes this function; they are rather relevant to addressing the question of 

how the function is being computed.   

 

Moreover, specifying the mind-world implementational relation does not seem to be 

essential to the explanandum cognitive phenomenon. At least we see very little effort, if 

any, to describe these mechanisms in computational theories of cognition. Take our 

oculomotor integrator. We can assume that the mirroring relation between the integration 

function and the outer, velocity-position relation, was established in a very long evolutionary 

process whose result is the mirroring integrator (we can also suppose that different 

evolutionary mechanisms take place in different species such as goldfish, cats and primates). 

But no one appeals to these implementational processes in order to explain the 

appropriateness of inner functions and mechanisms to the cognitive task. This, in my view, is 

not too surprising: The relevant feature for the explanation is the morphism relation 

between the mirroring integrator and the velocity-position relation and not the details about 

the implementation of the mapping. When we see that these modelling relations are in 

place we can understand why the inner neural mechanisms (including the computed input-

output function) end up in codes of eye position. The mind-world evolutionary story might 

explain how those modelling relations were established in the first place, but they add little, 

if anything, to the conclusion that computing integration is appropriate to producing codes 

of eye position.  

 



19 
 

I do not say that the modelling explanation is the "only game in town", and that it might not 

be replaced in future by a full-blown mechanistic explanation. My point is that the modelling 

assumption is currently entrenched in theoretical and computational approaches in 

cognitive neuroscience, and for a reason. The question of appropriateness arises when we 

describe the brain as an information-processing system. When we explain an information-

processing task that is partly defined in terms of what is being represented, we are forced to 

address the question of why the processes that take place inside the brain, which start from 

some input representations, lead to the appropriate output representations. Input-output 

modelling provides an explanation for this appropriateness. Whether modelling explanations 

will be replaced in the future by full-blown mechanistic explanations is yet to be seen, but is 

certainly not to be ruled out.   

 

6. Optimality 

   

In a recent paper, Mazvita Chirimuuta (2014) introduces the notion of I-minimal models. 

These computational models are minimal in the sense that "they typically abstract away 

from many biophysical details of the neural system" (p. 128).20 My focus here is on the I-

aspect of I-minimal, which alludes to interpretative models (Dayan and Abbott 2001). Dayan 

and Abbott note that theoretical neuroscience invokes, in addition to phenomenal 

(descriptive) and mechanistic models, interpretational models. These models “use 

computational and information-theoretic principles to explore the behavioral and cognitive 

significance of various aspects of nervous system function, addressing the question of why 

nervous systems operate as they do” (2001:1).  

At first glance, it seems that Chirimuuta (via Dayan and Abbott) and I are alluding to the 

same why questions, of why nervous systems operate as they do. But the answers go in 

different directions. I argue that answering these why questions involves input-output 

modelling. Chirimuuta argues that answering why questions about the operations of nervous 

                                                      
20 Chirimuuta argues that this minimality conflicts with the more chauvinistic statements about the 
dominance of mechanistic explanations. Talking about the normalization model, she says that “my 
key claim is that the use of the term ‘normalization’ in neuroscience retains much of its original 
mathematical-engineering sense. It indicates a mathematical operation—a computation—not a 
biological mechanism”, and that this model “departs fully from the model-to-mechanism mapping 
framework that has been proposed as the criterion for explanatory success” (Chirimuuta 2014); she 
refers here to Kaplan’s model-to-mechanism mapping (3M) requirement (Kaplan 2011; Kaplan and 
Craver 2011). For a reply see Kaplan (2017) who argues that the implementation of the normalization 
equation (in different species) is an essential part of the explanation.  
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systems invokes explanations ("interpretative models") that typically make reference to 

efficient coding principles. Her main example is the normalization equation that models the 

cross-orientation suppression of simple cell response in the primary visual cortex and in 

other systems. Very briefly, while cells in V1 were found to selectively respond to bar-

shaped stimuli in a preferred orientation (Hubel and Wiesel 1962), it turns out that this 

response is significantly reduced ("suppressed") if the preferred stimuli are super-imposed 

by other stimuli with different, non-preferred, orientation. Heeger (1992) advanced the 

normalization model to account for the phenomenon. The idea is that in addition to the 

excitatory input from LGN, each V1 cell also receives inhibitory inputs from its neighboring 

V1 cells (that are sensitive to lines in different angles). As Chirimuuta emphasizes, this 

normalization equation – which quantitatively describes the cells' responses – is later found 

in other parts of the nervous system (Carandini and Heeger 2012). This raises the question: 

“why should so many systems exhibit behavior described by normalization equation?” And 

the answer to this is that “for many instances of neural processing individual neurons are 

able to transmit more information if their firing rate is suppressed by the population average 

firing rate” (p. 143).  

How does this account of why questions, in terms of efficient coding principles, comport 

with my account of why questions, in terms of modelling? My tentative answer is that the 

accounts are different as the why questions are different.21 But the questions are not 

disconnected. My concern is questions of the form: Why is a certain function f appropriate 

(or not) for a certain task? Chirimuuta is concerned with the further question: Take all the 

functions f1, f2, … that are appropriate for the task. Why choose fi rather than the other f's?22  

 

To see the difference, take the example of edge-detection. Marr (1982; Marr and Hildreth 

1980) argues that V1 cells detect edges by computing the zero-crossings of second-

derivative Laplacian operators. The latter operators are applied by the ganglions and LGNs to 

the retinal image and are described, quantitatively, by the formula 2GI, where I is the 

image,  is a convolution operator and 2G is a filtering operator: G is a Gaussian that blurs 

the image, and 2 is the Laplacian (∂2/∂x2 +∂2/∂y2). One question we can ask, as Marr does, 

is why this computation is appropriate for detecting edges.23 The answer, I suggested, is 

                                                      
21 Colin Klein suggested that we might be dealing here with different why questions. 
22 A similar question arises for the different algorithms that support the same function, which is why 
using one algorithm rather than another.  
23 Marr writes:  
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provided in terms of modelling (Shagrir 2010; Shagrir and Bechtel 2017). In particular, this 

input-output function preserves sharp changes in reflectance and illumination in the visual 

field that happen to occur along physical edges (e.g., object boundaries), and that can be 

described in terms of derivation. Other functions – factorization, exponentiation, division – 

that do not preserve the pertinent relation are obviously not appropriate for edge-

detection.  

 

But, now, there are other functions that might be appropriate for the task too. As Marr 

noticed, the visual system could detect edges by computing the extreme points of first-

derivative operators, the second-order directional derivatives and perhaps other 

appropriate functions. So there is a further question: Why compute the zero-crossing of 

second-derivative Laplacian operators rather than computing other derivative (directional) 

operators, which are appropriate too. I think that Chirimuuta is concerned with this further 

question. Assuming that the task is responding to oriented lines ("edges"), her question is: 

Why compute the normalization equation (cross orientation suppression) rather than (say) a 

simple linear response to the receptive-field properties. In many cases, the answer has to do 

with the efficiency of computation. Given that there is a limit to the amount of information-

processing possible in the brain, the expected simple-linear-response function might not be 

consistent with the limitations of the brain. In this case, we appeal to efficient-coding 

principles and other canons of information theory. Indeed, Marr discusses this point of 

efficiency in some detail in his theory of edge-detection (1982: p. 56 ff.). He writes that "the 

great advantage of using it [Laplacian operator] is economy of computation" (p. 56). The 

computation of the directional derivative operators is costly, whereas using the Laplacian 

operators is efficient and satisfactory.   

 

My tentative proposal, then, is that computational theories of cognition are concerned with 

a family of why questions about the operations of the nervous system. Some questions are 

about the appropriateness of these operations to the cognitive tasks. Other questions 

address the advantage of these operations over other (seemingly) appropriate operations, 

and there might be other kinds of why questions as well.   

                                                                                                                                                        
Up to now I have studiously avoided using the word edge, preferring instead to discuss the 
detection of intensity changes and their representation by using oriented zero-crossing 
segments. The reason is that the term edge has a partly physical meaning – it makes us think 
of a real physical boundary, for example – and all we have discussed so far are the zero 
values of a set of roughly band-pass second-derivative filters. We have no right to call these 
edges, or, if we do have a right, then we must say so and why. (1982: 68) 
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7. Summary 

 

I argued that input-output modelling is central to computational work in cognitive 

neuroscience. Looking at three examples, we saw that in some cases the modelling is more 

apparent (as in the examples of integration), whereas in other cases it takes more effort to 

expose the modelling relation (as in changing reference framework). I then explicated the 

central theoretical role of input-output modelling. It plays a methodological role, in 

discovering what function is being computed. And it plays an explanatory role, in accounting 

for the appropriateness of the computed function for the explanandum cognitive task. 

Finally, I compared very briefly the modelling explanation to mechanistic and optimality 

explanations, noting that in both cases the explanations can be seen as complementary 

rather than contrastive or competing. I haven't discussed the role of input-output modelling 

in the characterization of representation and computation. I leave this endeavor for another 

occasion. 
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Figure 1: A family-tree model for determining familial links (from Ramsey 2007: 81 

(fig. 3c); with permission from Cambridge University Press).  
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Figure 2: Cummins's London-Tower-Bridge. The bottom span is the input-output 

function satisfied (or computed), f; the double-dashed arrow is a causal process by 

which the system satisfies (computes) f which operates on numerals. The top span is 

the function plus which is defined over numbers. The mapping ("interpretation") 

function, I, maps the inputs and outputs of f to the inputs and outputs of plus. The 

input-output function f thus mirrors or preserves the plus function.  
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Figure 3: The common neural integrator. The neural integrator receives as inputs 

eye-velocity encoded signals, Ė, and produces eye-position encoded outputs E. The 

velocity codes, Ė, combine the vestibular, optokinetic, saccadic, and pursuit 

velocities. These codes are projected directly to the motoneurons that produce 

velocity commands. These codes are also projected to the neural integrator that 

produces position codes, which are in turn projected to the motoneurons for 

position commands (Adapted from Cannon and Robinson 1987: 1384 (fig. 1); 

reprinted by permission of the American Physiological Society (APS)). 
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Figure 4: The oculomotor integrator as an input-output model. The lower span 

describes a causal process in the neural system (i.e., in the neural integrator) that 

transforms input values, Ė to output values E. The computed function, f, is 

mathematical integration (in the abstract), namely, the values E, are the result of 

mathematical integration over Ė with respect to time. The upper span describes the 

target domain, namely, the eyes. The term Ė describes the velocity of the eye, 

whereas the term E describes the (horizontal) distance from previous eye position, 

namely, new eye position. The velocity-position relation is also that of integration. 

Thus the mapping, I, is a morphism relation, and the integrator (assuming that the 

inputs and outputs encode velocities and positions respectively) is an input-output 

model.  
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Figure 5: The Zipser-Andersen model. (a) The three-layer network, where the two 

sets of input units stand for the retinotopic location cells (bottom left) and eye-

orientation cells (bottom right). The hidden units are meant to model the behavior of 

the third-group of PPC cells. The units of the output layer (two versions) stand for 

cells that encode the head-centered location. The network is trained through a 

supervised learning technique. (b) Area 7a visual neuron receptive field with a single 

peak near the fovea. (c) A composite of 30 area 7a-eye-position units, whose firing 

rates are plotted as a function of horizontal or vertical eye deviation (Reprinted by 

permission of Macmillan Publishers Ltd: D. Zipser & R.A. Andersen, “A back-

propagation programmed network that simulates response properties of a subset of 

posterior parietal neurons,” Nature, 331: 679–684 (fig. 4), copyright (1988). 

 

 


