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Abstract 
 
Are all three of Marr’s levels needed? Should they be kept distinct? We argue for the 
distinct contributions and methodologies of each level of analysis. It is important to 
maintain them because they provide three different perspectives required to understand 
mechanisms, especially information processing mechanisms. The computational 
perspective provides understanding of how a mechanism functions in broader 
environments that determine the computations it needs to perform (and may fail to 
perform). The representation and algorithmic perspective offer an understanding of how 
information about the environment is encoded within the mechanism and what are the 
patterns of organization that enable the parts of the mechanism to produce the 
phenomenon. The implementation perspective yields an understanding of the neural 
details of the mechanism and how they constrain function and algorithms. Once we 
adequately characterize the distinct role of each level of analysis, it is fairly straightforward 
to see how they relate.  
 
 
 
1. Introduction 
 
The term level is used in a wide variety of ways. One use refers to levels of organization—a 
whole system is at a higher level than the parts that constitutes it and the activities the 
whole performs are at a higher level than those of its components (Craver & Bechtel, 2007). 
This is not the use Marr (1982) had in mind in distinguishing the computational, 
representational and algorithmic, and implementational levels. These are levels of analysis, 
not levels of organization and so, contrary to French et al. (this issue), Marr is not 
addressing topics such as the emergence of higher levels. The main question raised by the 
various papers in this issue is whether all three types of analysis are required and, if so, 
how they relate. The question of how they relate, we will argue, is fairly straightforward 
once we (1) characterize the distinctive role of each type of analysis and (2) show how each 
type of analysis makes an important, non-redundant contribution to understanding 
information processing mechanisms. 
 
As the explanatory relevance of the implementational level is generally not contested, we 
will not dwell on it. Within the context of a mechanistic framework of explanation, it 
specifies the parts (e.g., neurons) and operations (excitation or inhibition of other neurons) 
that are employed or recruited in the generation of the phenomenon of interest. Challenges 
to Marr’s conception of levels focus on the representational and algorithmic and the 
computational levels of analysis. The idea of algorithms governing the transformations of 
representations is familiar from computer science but, as we will see, is not limited to the 
sorts of representations and algorithms used in digital computers. Rather, it allows for the 
identification of the organization of the mechanism that explains how representations are 



manipulated to generate the phenomenon. We will show how this contributes to explaining 
the phenomenon in a manner that is not redundant with what is explained at the 
implementation level. The most distinctive, and least well understood, of Marr’s three types 
of analysis is the computational level. As we will argue, Marr was not concerned just to 
specify the function being computed, but to explain why this function needs to be 
computed. This requires looking outside the mechanism to the environment and to the 
tasks that need to be performed in that environment. We begin with the computational 
level, then turn to the representation and algorithm level. 
 
2. The Computational Level 
 
Marr's notion of computational-level theory has received a variety of interpretations 
(Shagrir & Bechtel, in press). Many have argued that the computational level aims at stating 
the cognitive phenomenon to be explained; the explanation itself is then provided at the 
algorithmic and implementation levels (Bermúdez, 2005; Hardcastle, this volume; Ramsey, 
2007). Others have lumped together the computational and algorithmic levels, describing 
them as sketches that are “elliptical or incomplete mechanistic explanations” (Piccinini & 
Craver, 2011, p. 284) to be later filled in by full-blown mechanistic explanations. Yet others 
have associated the computational level with an idealized competence and the algorithmic 
and implementation levels with actual performance (Craver, 2007; Frixione, 2001; Horgan 
& Tienson, 1994; Polger, 2004;  for a teleological variant, see Anderson, this volume). 
Finally, Egan (2010) associates the computational level with an explanatory formal theory, 
which mainly specifies the computed mathematical function (see also van Rooij, 2008).   
 
Proponents of Bayesian optimality analysis often refer to Marr, emphasizing that their 
"focus is on computational-level theories, characterizing the functional capacities of human 
inference rather than specific psychological processes that implement those functions 
(Tenenbaum, Griffiths, & Kemp, 2006, p. 206). This level of analysis, they say, "is focused 
entirely on the nature of the problem being solved – there is no commitment concerning 
how the cognitive system actually attempts to solve (or approximately to solve) the 
problem" (Chater, Tenenbaum, & Yuille, 2006, p. 290). While this probabilistic viewpoint 
might fit with each of interpretations above, it seems closest to the last two interpretations. 
According to this viewpoint, probabilistic models of cognition provide explanatory 
quantitative theories of a cognitive capacity without referring to specific psychological and 
neural mechanisms.  
 
We have defended a different interpretation (Shagrir, 2010; Shagrir & Bechtel, in press) 
that  emphasizes the role of the environment in Marr's notion of computational analysis.  
Marr characterizes the computational type of analysis as specifying “what the device does 
and why” (1982, p. 22). Whereas most commentators have addressed only the what aspect, 
Marr insists it includes the why aspect whose aim is to demonstrate the basis of the 
computed function in the physical world (1977, p. 37). Marr associates this why aspect with 
what he calls physical constraints, which are physical facts and features in the physical 
environment of the perceiving individual (1982, p. 22-23). These are constraints in the 
sense that they limit the range of functions that the system could compute to perform a 
given visual task successfully.   



 
What exactly are the relations between the physical constraints and the computed 
function? How do these constraints substantiate the basis of the computed function in the 
physical world? The gist of our interpretation is that Marr assumes implicitly that the 
visual system mirrors or preserves certain structural relations in the visual field. By 
structural relations we mean "high order" mathematical, geometrical or other formal 
relations. The visual system would preserve these relations if there were an isomorphic 
mapping from the visual system onto the visual field; more realistically we talk about 
homomorphism or partial-isomorphism and acknowledge that even these mappings 
involve a vast amount of approximation and idealization so that a precise morphism 
relation never actually obtains.  Nonetheless, our claim is that a computational analysis 
appeals to the physical constraints in order to underscore these morphism relations, which, 
in turn, play both explanatory and methodological roles in theories of vision. Explanatorily 
they serve to demonstrate the appropriateness and adequacy of the computed function to 
the information-processing task (Marr, 1982, pp. 24-25). Methodologically they serve to 
guide discovery of the function that the visual system computes (Hildreth & Ullman, 1989).  
 
Marr never discusses isomorphism or structural similarities explicitly. Nevertheless, we 
have shown that it is central to his computational analysis of edge detection and stereo 
vision (Shagrir, 2010; Shagrir & Bechtel, in press). Thus to take the theory of edge-
detection, early visual processes compute the zero-crossings of (Laplacian) second 
derivative filterization of the retinal images. These mathematical relations reflect sharp 
changes in light reflection in the visual field that often occur along physical edges such as 
object boundaries (whereas the latter changes can be described in terms of extreme points 
of first-derivatives or zero-crossings of second derivatives of the reflection function). This 
physical fact ("constraint") – that sharp changes in reflection often occurs along physical 
edges – explains why the visual system computes derivation, and not (say) factorization or 
exponentiation, for the task of edge-detection. It also guides the visual theorist in 
discovering the mathematical function that the system computes, namely, derivation.   
 
Here we focus briefly on another, non-visual, example—the neural integrator in the 
oculomotor system. This example indicates that Marr's notion of computational analysis is 
not confined to vision but is widely applicable in computational cognitive neuroscience.  
 
The neural integrator converts eye-velocity inputs to eye-position-outputs, and thus 
enables the oculomotor system to move the eyes to the right position (Robinson, 1989; 
Leigh & Zee, 2006). The inputs arrive from fibers coding vestibular, saccadic or pursuit 
movements (figure 1); the system produces eye-position codes by computing mathematical 
integration over these eye-velocity encoded inputs.  In cats, monkeys, and goldfish, the 
network that computes horizontal eye movements appears to be localized in two brainstem 
nuclei, the nucleus prepositushypoglossi (NPH) and the medial vestibular nucleus (MVN).  



 
Figure 1: The neural integrator (NI) receives eye-velocity coded inputs, Ė, and, 
computing integration, produces eye-velocity coded outputs, E. The hypothesis is 
that the integrator is common to vestibular, saccadic and pursuit movements, thus 
receiving vestibular (Ėv), saccadic (Ėr), and pursuit (Ėp), velocity coded inputs. On 
the right it is shown how the head velocity signals, Ḣ are converted into eye-velocity 
codes (Ėv). These codes are projected directly to the motoneurons (mn) that have to 
produce velocity commands, but also the neural integrator (NI) which produces 
position codes projected to the motoneurons  for position commands (from 
Robinson 1989, p. 35).  

 
Mathematical integration characterizes operations performed in two very different places. 
One is in the neural representing system, namely, the neural integrator. It performs 
integration on the neural inputs to generate neural commands. This is of course the reason 
that the system is known as integrator. Another and very different place, however, is in the 
target domain being represented, in our case the eyes. The relation between position and 
velocity of the eye can be described in terms of integration too! The distance between the 
previous and current positions of the eye is determined by integrating over its velocity 
with respect to time. So what we have here is an (iso-)morphism between the representing 
sensory-motor neural system (the integrator) and the represented target domain (the eyes 
and their properties). The neural integrator mirrors or preserves certain relation in the 
target domain, namely the distances between two successive eye positions. By computing 
integration, the neural function mirrors, reflects or preserves the integration relation 
between eye velocity and eye positions.   
 
Let us put these findings in the context of Marr's notion of computational analysis. The 
what aspect describes the mathematical function, integration, computed by the neural 
integrator. The why aspect relates the computed function with the physical environment, 
namely, the eyes with their properties. The analysis invokes a physical constraint, which in 
our case is the relation between eye-velocity and the distance between successive eye-
positions. Using this constraint, it is shown that there is a morphism mapping relation 
between the neural function and the target domain. This mapping relation is underscored 



by the fact that the two domains have a shared structure, which is mathematical 
integration.   
 
As said, the morphism relation plays both explanatory and methodological roles. On the 
explanatory side, it serves to explain why computing integration is appropriate for the task 
of controlling eye movement. The neural network computes integration and not, say, 
multiplication, exponentiation, or factorization, because integration preserves the 
integration relation between eye movement and eye positions in the target domain. 
Factorizing numbers would not result in moving the eyes to the right place, precisely 
because it does not preserve relations in the target domain that are relevant to eye 
movements. Integration does: When you compute integration over eye-velocity encoded 
inputs, you mirror the integration relation between velocity and position; hence, you 
output representations of a new eye position. The algorithmic and implementation levels 
complement this explanation by specifying how this integration function is carried out in 
the neural system.  
 
On the methodological side, the morphism relation is instrumental in discovering what 
function is computed. In our example, experimental electrophysiological results indicated 
that the neural system converts eye-velocity pulses into eye-position codes. Looking at the 
relation ("physical constraint") between the represented velocity and position, 
theoreticians quickly inferred that the internal relations between the representing states 
must be of integration. This logic of discovery assumes that the computed function is that of 
integration since the computed function must correspond to the velocity-position 
integration relation, which is already known.  
 
How does this interpretation relate to the Bayesian approach to cognition? It is not easy to 
answer this question because there appear to be multiple Bayesian approaches (Jones & 
Love, 2011). We will make few preliminary points. It is obvious that both Marr and the  
Bayesians hold the conviction that theories of cognition go above and beyond mechanisms, 
whether algorithms or their neural implementations. And they both think that the 
computational analysis of the task does not focus on psychological and neural mechanisms; 
rather it highlights and identifies non-mechanistic elements of a cognitive phenomenon. 
Marr and the Bayesians are also in full agreement that this computational analysis ideally 
produces mathematical or formal descriptions, and that these descriptions are explanatory.  
 
Another point of convergence between Marr and the Bayesians is that computational 
analysis provides some sort of an optimal solution to the problem. Marr says that 
computational theories state "that what is being computed is optimal in some sense" (p. 
19), and he compares Chomsky's notion of competence with his computational theories (p. 
28). Bayesian models aim to show how a problem can be solved in principle, which 
amounts to how rational agents should update their beliefs in light of new data (Griffiths, 
Kemp, & Tenenbaum, 2008). Despite the similarities, there is an important difference—
Marr's theories aim at the characterization of the real (even if idealized) mathematical 
function computed by the cognitive system, whereas the Bayesians models aim at the 
characterization of the function that the cognitive system should compute and assumes 
that the actual cognitive system approximates this solution.  



 
A further point of divergence concerns the elements that are being included in 
computational models. Marr definitely assumes that some elements at the computational 
level are representations. However, he thinks that questions about kinds of representations 
belong to the algorithmic level. To use his example of an adding machine, the 
computational level specifies that the machine computes addition; part of the specification 
is that the inputs and outputs represent numbers. But whether the machine uses Arabic, 
Roman or binary representational system is a question left to the algorithmic level (Marr, 
1982, p. 20ff). Bayesians, it seems to us, put more emphasis on the kind and structure of 
representations involved in cognitive functions, and their models often refer to internal 
representational structures. For example, they show that relations between different 
biological species could be represented by a tree, a ring, a set of clusters, or a low 
dimensional space. (Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010) 
 
What is the role of the environment in the computational analysis? Jones and Love (2011) 
argued that the Bayesians downplay the role of the environment in their analysis. Chater, 
Goodman, Griffiths, Kemp, Oaksford, and Tenenbaum (2011) responded that as a matter of 
fact Bayesian analysis is often based, explicitly, on assumptions about environmental 
structure. In this respect the Bayesian conception of computational analysis might not be 
very different from Marr's (as we interpreted him). But our interpretation emphasizes the 
role of the environment in the analysis. We have shown, first, that the environment 
underlies the explanatory power of the computational analysis. The explanatory role of the 
environment extends to the Bayesians examples as well. A directed graph is a better model 
of the properties generated by a causal transmission process (Tenenbaum, Griffiths, & 
Kemp, 2006) precisely because a directed graph preserves the formal structure of the 
causal process, whereas (say) a taxonomic tree does not.      
 
The environment also plays a role in fixing the appropriate mathematical description. 
Chater et al. (2011) say that what is distinctive about Bayesian approach is "a top-down, or 
'function-first' research strategy, as recommended by Marr (1982): from computational, to 
algorithmic, to implementational levels" (p. 196; see also Griffith et al. 2010). They give as 
an example a pocket calculator that uses input and output symbols we do not well 
understand. Their claim is that we are much more likely to understand what algorithms are 
carried out if we first realize that the system computes addition than the other way around. 
This claim is certainly in accord with Marr's approach. The question, however, is how do 
we figure out that the system computes addition and not another function. Marr's answer is 
that when we study cognitive systems we use cues from the environment that constrain the 
computed function. We see that the relation between the encoded velocity and the encoded 
position is that of integration to conclude that the neural system is an integrator. Marr was 
overly optimistic about this method, thinking that the environmental constraints are 
always apparent to us; however, it is often not the case (Shagrir & Bechtel, in press). In this 
respect, techniques developed in the Bayesian analysis might constitute an important 
contribution to the proposed function-first methodology (Yuille & Kersten, 2006). What we 
emphasize, however, is that the prospects of this methodology crucially depend, as Marr 
noticed, on successful deployment of cues from the environment. 
 



3. The representation and algorithm level 
 
Those authors who downplay the distinction between the representation and algorithm 
type of analysis and the implementation type of analysis (Bickle, this issue; Hardcastle, this 
issue) implicitly hold that the specific details of the neural implementation are all that is 
required for explanation. But while the specific parts and operations are certainly relevant 
to explaining a phenomenon, they are not the only relevant factors. As any engineer or 
designer knows, it is also crucially important to understand the way in which the parts and 
operations are organized and how this organization facilitates generation of the 
phenomenon. Different ways of putting the same parts together will result in different 
phenomena (many of them not very interesting) and the challenge for a designer or 
engineer is to discover an organizational design that is able to generate the phenomenon 
they desire. For scientists the challenge is much the same, although they are typically 
engaged in reverse engineering—trying to discover the organization that enabled the parts 
together to produce the phenomenon.  
 
Someone critical of treating the representation and algorithm level as distinct from the 
implementation level might note that in any implementation a particular organization is 
realized. However, crucial to the endeavors of both designers and scientists is the discovery 
of design principles—patterns of organization that produce the same results across a wide 
range of different implementations. If this were not possible, then each specific 
organization would have to be analyzed on its own to determine its effects by, for example, 
representing the important properties of all of its parts in differential equations, identifying 
the correct parameters, and simulating the behavior of the whole. To explain why a given 
physical system behaved a particular way one could do no more than appeal to such a 
simulation. But designers and increasingly scientists have found success with a different 
strategy—identifying design principles that generate the same phenomenon when realized 
in mechanisms composed of different parts performing different operations as long as they 
maintain the required relations to each other. These relations are often presented in graphs 
in which nodes represent entities and edges the effects of specific nodes on others.  
 
Identifying design principles requires abstracting from the details of a particular 
instantiation (Levy & Bechtel, 2013). A graph such as the one below showing a double-
negative feedback motif (Figure 2) does not indicate what plays the roles of X and Y, only 
that each inhibits the activity of the other. To determine what will happen in a mechanism 
in which such a design is implemented, researchers turn to computational modeling. For 
example, after finding the double-negative feedback motif occurring frequently in gene 
regulation networks in eukaryotic cells, Tyson and his collaborators (Tyson, Chen, & Novák, 
2003; Tyson & Novák, 2010) developed computational models and demonstrated that this 
design can, under a broad range of parameter values, generate a bi-stable switch that 
requires a higher level of the input to turn on but will only turn off when the input drops to 
a significantly lower level. This is particularly useful in forcing normally reversible 
processes to operate sequentially.  



 
Figure 2. Double-negative feedback loop motif 

 
The example we just offered is from molecular biology, not cognitive science or 
neuroscience. Accordingly, while it might seem that one can describe a motif like the 
double-negative feedback loop in an algorithm, it doesn’t seem to be operating over 
representations and involved in information processing. As such, it might not seem 
appropriate to Marr’s level of analysis. But in fact molecular biologists are increasingly 
employing information processing vocabulary to describe circuits like these whose parts 
(e.g., transcription factors) carry information that needs to be processed by the cell in 
determining its responses. Moreover, very similar analyses are currently being developed 
by Sporns and his colleagues (Sporns & Kötter, 2004; Sporns, 2010) in their attempts to 
understand the patterns of connection in the brain. Treating whole brain regions as units 
(that serve representational functions), they find the dual-dyad motif (Figure 3) occurring 
particularly frequently in contexts in which the apex node is a hub-region that has an 
especially large number of connections to other regions. Computational analysis of this 
motif reveals that it is especially effective in promoting synchronization of activity with 
zero phase-lag across long distances (Vicente, Gollo, Mirasso, Fischer, & Pipa, 2008), a 
function important in connecting regions representing related information and so 
underlying cognitive performance. 

 
Figure 3. Dual-dyad motif 

 
We have identified two simple motifs that have been shown to have important information 
processing functions either in cells or in the brain. Both cell and brain networks are 
enormously complex, and identifying motifs is only one tool for understanding their 
function. Other tools are being developed to analyze larger scale networks (see van den 
Heuvel & Sporns, 2011, for discussion of what is called the "rich-club" hub structure in the 
primate brain). What is important is that these network analyses abstractly characterize 
the organization in the mechanism and use computational analysis to determine the 



contribution to the performance of a phenomenon. These results are established without 
knowing what entities implement the activity of the nodes and what operations implement 
the edges. Moreover, we contend that such accounts are indicative of the type of analysis 
Marr had in mind in emphasizing the importance of the representation and algorithm level 
of analysis and differentiating it from the implementational level.  
 
4. Conclusion: Relating Marr’s Levels 
 
In the two previous sections we have emphasized (1) the distinctive role of Marr’s 
computational and representation and algorithmic analyses and (2) shown how both make 
an important contribution to understanding information processing mechanisms that is 
non-redundant to that of the other or of the implementation level. What remains to discuss 
is how these levels are related. Each offers answers to different questions that nonetheless 
are related to each other. This can be seen by recognizing that we are dealing with 
information processing mechanisms and that understanding mechanisms requires 
integrating different pieces of information. First, one requires information about the 
phenomenon being explained by the mechanism. The computation level, by focusing on the 
structure of the environment from which organisms need to acquire information to live 
their lives, specifies the phenomenon to be explained. Empirical, including experimental, 
investigation at this level is crucial since our intuitive understanding of the task may be 
wrong and if it is, so are the explanations offered for it. Second, in any situation where the 
operations of the individual parts are organized in a complex manner, explaining how the 
mechanism works requires understanding the contribution of the organization. The 
discovery and articulation of design principles provides accounts of what types of 
phenomena may be produced given those designs. As in engineering, identifying the 
relevant design principles and understanding what behavior they will generate under a 
range of implementations is different than determining what is actually performing the 
various roles in a specific mechanism. This is not to discount the implementation level. 
Since not every implementation will satisfy the conditions for the algorithm (design), it is 
important to investigate the actual implementation. Moreover, many features of the 
phenomenon result from the details of the implementation.  
 
In addition to answering different questions about a mechanism, research at each of Marr’s 
three levels of analysis can productively constrain research at other levels. Working from 
the top-down, knowing the structure of the environment and the information it makes 
available to the organism limits the types of information processing algorithms that can 
utilize that information. Likewise, having identified a mode of organization and the 
conditions under which it will generate a form of behavior can guide the search for the 
components that implement the design. Constraints also arise from the bottom up. 
Knowing features of the implementation can put constraints on the search for algorithms. 
Some algorithms might not be implementable given the components available, and 
alternatives must be sought. Likewise, knowing the algorithm that seems to be functioning 
can guide investigations into the environment and reveal different features of its structure 
that are relevant to the organism.  
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