
66 COMMUNICATIONS OF THE ACM | JANUARY 2019 | VOL. 62 | NO. 1

contributed articles

THE CHURCH-TURING THESIS (CTT) underlies tantalizing
open questions concerning the fundamental place
of computing in the physical universe. For example,
is every physical system computable? Is the universe
essentially computational in nature? What are the
implications for computer science of recent speculation
about physical uncomputability? Does CTT place a
fundamental logical limit on what can be computed,
a computational “barrier” that cannot be broken, no
matter how far and in what multitude of ways computers
develop? Or could new types of hardware, based perhaps
on quantum or relativistic phenomena, lead to radically

new computing paradigms that do
breach the Church-Turing barrier, in
which the uncomputable becomes com-
putable, in an upgraded sense of “com-
putable”? Before addressing these ques-
tions, we first look back to the 1930s to
consider how Alonzo Church and Alan
Turing formulated, and sought to jus-
tify, their versions of CTT. With this nec-
essary history under our belts, we then
turn to today’s dramatically more pow-
erful versions of CTT.

History of the Thesis
Turing stated what we will call “Turing’s
thesis” in various places and with vary-
ing degrees of rigor. The following for-
mulation is one of his most accessible.

Turing’s thesis. “L.C.M.s [logical com-
puting machines, Turing’s expression
for Turing machines] can do anything
that could be described as … ‘purely me-
chanical’.”38

Turing also formulated his thesis
in terms of numbers. For example, he
said, “It is my contention that these op-
erations [the operations of an L.C.M.]
include all those which are used in
the computation of a number.”36 and
“[T]he ‘computable numbers’ include
all numbers which would naturally be
regarded as computable.”36

Church (who, like Turing, was work-
ing on the German mathematician
David Hilbert’s Entscheidungsproblem)
advanced “Church’s thesis,” which he
expressed in terms of definability in his
lambda calculus.

Church’s thesis. “We now define the
notion … of an effectively calculable

The Church-
Turing Thesis:
Logical Limit
or Breachable
Barrier?

DOI:10.1145/3198448

In its original form, the Church-Turing thesis
concerned computation as Alan Turing
and Alonzo Church used the term in 1936—
human computation.

BY B. JACK COPELAND AND ORON SHAGRIR

 key insights
˽˽ The term “Church-Turing thesis” is used

today for numerous theses that diverge
significantly from the one Alonzo Church
and Alan Turing conceived in 1936.

˽˽ The range of algorithmic processes
studied in modern computer science
far transcends the range of processes a
“human computer” could possibly carry out.

˽˽ There are at least three forms of
the “physical Church-Turing thesis”—
modest, bold, and super-bold—though,
at the present stage of physical inquiry,
it is unknown whether any of them is true.

http://dx.doi.org/10.1145/3198448

JANUARY 2019 | VOL. 62 | NO. 1 | COMMUNICATIONS OF THE ACM 67

I
M

A
G

E
 B

Y
 N

A
S

A
,

E
S

A
,

A
N

D
 T

H
E

 H
U

B
B

L
E

 H
E

R
I

T
A

G
E

 T
E

A
M

 (
S

T
S

C
I

/A
U

R
A

)

function of positive integers by iden-
tifying it with the notion of a recursive
function of positive integers (or of a
λ-definable function of positive inte-
gers).”5

Church chose to call this a definition.
American mathematician Emil Post, on
the other hand, referred to Church’s the-
sis as a “working hypothesis” and criti-
cized Church for masking it in the guise
of a definition.33

Upon learning of Church’s “defi-

nition,” Turing quickly proved that
λ-definability and his own concept of
computability (over positive integers)
are equivalent. Church’s thesis and Tur-
ing’s thesis are thus equivalent, if atten-
tion is restricted to functions of positive
integers. (Turing’s thesis, more gen-
eral than Church’s, also encompassed
computable real numbers.) However,
it is important for a computer scientist
to appreciate that despite this exten-
sional equivalence, Turing’s thesis and

Church’s thesis have distinct meanings
and so are different theses, since they
are not intensionally equivalent. A lead-
ing difference in their meanings is that
Church’s thesis contains no reference
to computing machinery, whereas Tur-
ing’s thesis is expressed in terms of the
“Turing machine,” as Church dubbed it
in his 1937 review of Turing’s paper.

It is now widely understood that
Turing introduced his machines with
the intention of providing an idealized

Is everything in the physical universe computable? Hubble Space Telescope view of the Pillars of Creation in the Eagle Nebula.

68 COMMUNICATIONS OF THE ACM | JANUARY 2019 | VOL. 62 | NO. 1

contributed articles

each going far beyond CTT-O. First, we
look more closely at the algorithmic
form of thesis, as stated to a first approx-
imation by Lewis and Papadimitriou29:
“[W]e take the Turing machine to be a
precise formal equivalent of the intuitive
notion of ‘algorithm’.”

What Is an Algorithm?
The range of algorithmic processes
studied in modern computer science
far transcends the range of processes
a Turing machine is able to carry out.
The Turing machine is restricted to, say,
changing at most one bounded part at
each sequential step of a computation.
As Yuri Gurevich pointed out, the con-
cept of an algorithm keeps evolving: “We
have now parallel, interactive, distrib-
uted, real-time, analog, hybrid, quan-
tum, etc. algorithms.”22 There are en-
zymatic algorithms, bacterial foraging
algorithms, slime-mold algorithms, and
more. The Turing machine is incapable
of performing the atomic steps of algo-
rithms carried out by, say, an enzymatic
system (such as selective enzyme bind-
ing) or a slime mold (such as pseudopod
extension). The Turing machine is simi-
larly unable to duplicate (as opposed to
simulate) John Conway’s Game of Life,
where—unlike a Turing machine—ev-
ery cell updates simultaneously.

A thesis aiming to limit the scope
of algorithmic computability to Turing
computability should thus not state
that every possible algorithmic process
can be performed by a Turing machine.
The way to express the thesis is to say
the extensional input-output function
ια associated with an algorithm α is al-
ways Turing-computable; ια is simply
the extensional mapping of α’s inputs
to α’s outputs. The algorithm the Tur-
ing machine uses to compute ια might
be very different from α itself. A ques-
tion then naturally arises: If an algo-
rithmic process need not be one a Tur-
ing machine can carry out, save in the
weak sense just mentioned, then where
do the boundaries of this concept lie?
What indeed is an algorithm?

The dominant view in computer sci-
ence is that, ontologically speaking, al-
gorithms are abstract entities; however,
there is debate about what abstract en-
tities algorithms are. Gurevich defined
the concept in terms of abstract-state
machines, Yiannis Moschovakis in
terms of abstract recursion, and Noson

Yanofsky in terms of equivalence class-
es of programs, while Moshe Vardi has
speculated that an algorithm is both
abstract-state machine and recursor. It
is also debated whether an algorithm
must be physically implementable. Mos-
chovakis and Vasilis Paschalis (among
others) adopt a concept of algorithm “so
wide as to admit ‘non-implementable’
algorithms,”30 while other approaches
do impose a requirement of physical im-
plementability, even if only a very mild
one. David Harel, for instance, writes:
[A]ny algorithmic problem for which we
can find an algorithm that can be pro-
grammed in some programming lan-
guage, any language, running on some
computer, any computer, even one that
has not been built yet but can be built
… is also solvable by a Turing machine.
This statement is one version of the so-
called Church/Turing thesis.”23

Steering between these debates—
and following Harel’s suggestion that
the algorithms of interest to computer
science are always expressible in pro-
gramming languages—we arrive at the
following program-oriented formula-
tion of the algorithmic thesis:

CTT-Algorithm (CTT-A). Every algo-
rithm can be expressed by means of a
program in some (not necessarily cur-
rently existing) Turing-equivalent pro-
gramming language.

There is an option to narrow CTT-A
by adding “physically implementable”
before “program,” although in our view
this would be to lump together two dis-
tinct computational issues that are bet-
ter treated separately.

The evolving nature and open-end-
edness of the concept of an algorithm is
matched by a corresponding open-end-
edness in the concept of a programming
language. But this open-endedness not-
withstanding, CTT-A requires that all
algorithms be bounded by Turing com-
putability.

Later in this article we examine com-
plexity-theoretic and physical versions
of the Church-Turing thesis but first
turn to the question of the justification
of the theses introduced so far. Are CTT-
O and CTT-A correct?

What Justifies the
Church-Turing Thesis?
Stephen Kleene—who coined the term
“Church-Turing thesis”—catalogued
four types of argument for CTT-O: First,

description of a certain human activ-
ity—numerical computation; in Tur-
ing’s day computation was carried out
by rote workers called “computers,” or,
sometimes, “computors”; see, for exam-
ple, Turing.37 The Church-Turing thesis
is about computation as the term was
used in 1936—human computation.
Church’s term “effectively calculable
function” was intended to refer to func-
tions that are calculable by an idealized
human computer; and, likewise, Tur-
ing’s phrase “numbers which would
naturally be regarded as computable”
was intended to refer to those numbers
that could be churned out, digit by digit,
by an idealized human computer work-
ing ceaselessly.

Here, then, is our formulation of
the historical version of the Church-
Turing thesis, as informed by Turing’s
proof of the equivalence of his and
Church’s theses:

CTT-Original (CTT-O). Every function
that can be computed by the idealized
human computer, which is to say, can
be effectively computed, is Turing-com-
putable.

Some mathematical logicians view
CTT-O as subject ultimately to either
mathematical proof or mathemati-
cal refutation, like open mathematical
conjectures, as in the Riemann hypoth-
esis, while others regard CTT-O as not
amenable to mathematical proof but
supported by philosophical arguments
and an accumulation of mathematical
evidence. Few logicians today follow
Church in regarding CTT-O as a defini-
tion. We subscribe to Turing’s view of
the status of CTT-O, as we outline later.

In computer science today, algo-
rithms and effective procedures are, of
course, associated not primarily with
humans but with machines. (Note, while
some expositors might distinguish be-
tween the terms “algorithm” and “ef-
fective procedure,” we use the terms in-
terchangeably.) Many computer science
textbooks formulate the Church-Turing
thesis without mentioning human com-
puters at all; examples include the well-
known books by Hopcroft and Ullman24
and Lewis and Papadimitriou.29 This is
despite the fact that the concept of hu-
man computation was at the heart of
both Turing’s and Church’s analysis of
computation.

We discuss several important mod-
ern forms of the Church-Turing thesis,

JANUARY 2019 | VOL. 62 | NO. 1 | COMMUNICATIONS OF THE ACM 69

contributed articles

employs the Schönfinkel-Curry idea of
“combinators” in order to axiomatize
the concept of an algorithmic function.)

Fourth in this catalog of consider-
ations supporting CTT-O are arguments
from first-order logic. They are typified
by a 1936 argument of Church’s and
by Turing’s argument II, from Section
9 of Turing’s 1936 paper. In 2013, Saul
Kripke28 presented a reconstruction
of Turing’s argument II, which goes as
follows: Computation is a special form
of mathematical deduction; and every
mathematical deduction—and there-
fore every computation—can be formal-
ized as a valid deduction in the language
of first-order predicate logic with iden-
tity (a step Kripke referred to as “Hil-
bert’s thesis”); following Gödel’s com-
pleteness theorem, each computation
is thus formalized by a provable formula
of first-order logic; and every computa-
tion can therefore be carried out by the
universal Turing machine. This last step
regarding the universal Turing machine
is secured by a theorem proved by Tur-
ing: Every provable formula of first-order
logic can be proved by the universal Tur-
ing machine.

The third and fourth of these argu-
ments provide justification for CTT-O
but not for CTT-A. As Robin Gandy20
pointed out, the third argument—Tur-
ing’s I—contains “crucial steps … where
he [Turing] appeals to the fact that the
calculation is being carried out by a hu-
man being.”20 For example, Turing as-
sumed “a human being can only write
one symbol at a time,” and Gandy noted
this assumption cannot be carried over
to a parallel machine that “prints an ar-
bitrary number of symbols simultane-
ously.”20 In Conway’s Game of Life, for
instance, there is no upper bound on
the number of cells that make up the
grid, yet the symbols in all the cells are
updated simultaneously. Likewise, the
fourth argument (Turing’s II) involves
the claim that computation is a special
form of formal proof, but the notion of
proof is intrinsically related to what a
human mathematician—and not some
oracle—can prove.

It is thus perhaps not too surprising
that the third and fourth arguments
in this catalog seldom if ever appear in
logic and computer science textbooks.
The two arguments that are always given
for the Church-Turing thesis (in, for ex-
ample, Lewis and Papadimitriou29) are

the argument from non-refutation
points out the thesis has never been
refuted, despite sustained (and ongo-
ing) attempts to find a counterexample
(such as the attempts by László Kalmár
and, more recently, by Doukas Kapan-
tais). Second, the argument from con-
fluence points to the fact that the vari-
ous characterizations of computability,
while differing in their approaches and
formal details, turn out to encompass
the very same class of computable func-
tions. Four such characterizations were
presented (independently) in 1936 and
immediately proved to be extension-
ally equivalent: Turing computability,
Church’s λ-definability, Kleene’s recur-
sive functions, and Post’s finitary com-
binatory processes.

Third is an argument usually re-
ferred to nowadays as “Turing’s analy-
sis.” Turing called it simply argument
“I,” stating five very general and intui-
tive constraints—or axioms—the hu-
man computer may be assumed to
satisfy: “The behavior of the computer
at any moment is determined by the
symbols which he is observing, and his
‘state of mind’ at that moment”; “[T]
here is a bound B to the number of sym-
bols or squares which the computer
can observe at one moment”; “[E]ach
of the new observed squares is within
L squares of an immediately previously
observed square”; “[I]n a simple op-
eration not more than one symbol is
altered”; and “[T]he number of states
of mind which need be taken into ac-
count is finite.” Turing noted that refer-
ence to the computer’s states of mind
can be avoided by talking instead about
configurations of symbols, these being
“a more definite and physical counter-
part” of states of mind.36

The second part of Turing’s argu-
ment I is a demonstration that each
function computed by any human com-
puter subject to these constraints is also
computable by a Turing machine; it is
not difficult to see that each of the com-
puter’s steps can be mimicked by the
Turing machine, either in a single step
or by means of a series of steps. In short,
Turing’s five axioms entail CTT-O. (Tur-
ing’s axiomatic approach to comput-
ability was in fact foreshadowed by Kurt
Gödel in a suggestion to Church a year or
so earlier.15 Some more recent axiomatic
approaches to computability proceed
differently; for example, Erwin Engeler

The Turing machine
is restricted to,
say, changing at
most one bounded
part at each
sequential step
of a computation.

70 COMMUNICATIONS OF THE ACM | JANUARY 2019 | VOL. 62 | NO. 1

contributed articles

is whether these axioms completely
capture the concept of a computational
or algorithmic process, and, so far as
we see, no one has ever given a rigor-
ous mathematical justification of that
claim. The axioms may be supported
by informal arguments, but the whole
edifice then falls short of mathemati-
cal proof. This is most apparent when
the informal arguments offered for the
axioms invoke limitations in the cogni-
tive capacities of human computers, as
we point out elsewhere.13 A justification
of the second axiom may, for instance,
refer to the limitations of human ob-
servation. The axioms most certainly
lie beyond the scope of mathematical
demonstration if their truth depends on
contingent human limitations. Turing
himself cheerfully appealed to cognitive
limitations in the course of his analysis,
saying, for example, “[J]ustification lies
in the fact that the human memory is
necessarily limited.”36

In summary, our answer to “Is CTT-
O mathematically provable?” is: Turing
thought not and we have found no rea-
son to disagree with him. The various
historical arguments seem more than
sufficient to establish CTT-O, but these
arguments do indeed fall short of math-
ematical proof.

We next address complexity theoretic
forms of the Church-Turing thesis, then
turn to the question of whether CTT-A is
justified in the context of physically real-
istic computations.

Complexity: The Extended
Church-Turing Thesis
It is striking that the Turing machine
holds a central place not only in com-
putability theory but also in complexity
theory, where it is viewed as a universal
model for complexity classes.

In complexity theory, the time com-
plexities of any two general and rea-
sonable models of computation are as-
sumed to be polynomially related. But
what counts as “reasonable”? Aharonov
and Vazirani1 glossover “reasonable” as
“physically realizable in principle”; see
also Bernstein and Vazirani.3 If a com-
putational problem’s time complexity is
t in some (general and reasonable) mod-
el, then its time complexity is assumed
to be poly(t) in the single-tape Turing
machine model; see also Goldreich.21
This assumption has different names
in the literature; Goldreich21 called it the

confluence and non-refutation. Yet both
those arguments are merely inductive,
whereas the third and fourth arguments
are deductive in nature.

However, a number of attempts have
sought to extend Turing’s axiomatic
analysis to machine computation; for
example, Gandy20 broadened Turing’s
analysis in such a way that parallel com-
putation is included, while Dershowitz
and Gurevich16 gave a more general anal-
ysis in terms of abstract state machines.
We return to the topic of extending the
analysis to machine computation later
in this article but first address the im-
portant question of whether CTT-O is
mathematically provable.

Is the Thesis
Mathematically Provable?
It used to be thought by mathematical
logicians and others that CTT-O is not
amenable to formal proof, since it is not
a mathematically precise statement.
This is because it pairs an informal
concept—a “vague intuitive notion,”
Church called it5—with a precise con-
cept. However, Elliott Mendelson gave
a powerful critique of this general argu-
ment; and today the view that CTT-O is
formally provable seems to be gaining
acceptance; see, for example, Dershow-
itz and Gurevich.16 Inspired by Gandy,20
Wilfried Sieg35 stated that a tightened
form of Turing’s argument I proves the
thesis; and Kripke28 entertained the
same claim for Turing’s argument II.

Turing’s own view was that, on the
contrary, his thesis is not susceptible
to mathematical proof. He thought his
arguments I and II, and indeed “[a]ll
arguments which can be given” for the
thesis, are “fundamentally, appeals to
intuition, and for this reason rather un-
satisfactory mathematically.”36 Hilbert’s
thesis is another example of a proposi-
tion that can be justified only by appeal
to intuition, and so Kripke’s28 tightened
form of argument II, far from proving
CTT-O, merely deduced it from another
thesis that is also not amenable to math-
ematical proof.

Much the same can be said about ar-
gument I. If axioms 1–5 are formulated
in precise mathematical terms, then it is
certainly provable from them that com-
putation is bounded by Turing comput-
ability; this is probably what Gandy20
meant when he said Turing’s argument
I proves a “theorem.” But the real issue

Turing’s own view
was that, on the
contrary, his thesis
is not susceptible to
mathematical proof.

JANUARY 2019 | VOL. 62 | NO. 1 | COMMUNICATIONS OF THE ACM 71

contributed articles

binary sequence; Church showed such
sequences are uncomputable, as we
discussed elsewhere.8 Moreover, specu-
lation that there may be deterministic
physical processes whose behavior can-
not be calculated by the universal Tur-
ing machine stretches back over several
decades; for a review, see Copeland.9 In
1981, Pour-El and Richards34 showed
that a system evolving from computable
initial conditions in accordance with
the familiar three-dimensional wave
equation is capable of exhibiting be-
havior that falsifies CTT-P; even today,
however, it is an open question whether
these initial conditions are physically
possible. Earlier papers, from the 1960s,
by Bruno Scarpellini, Arthur Komar,
and Georg Kreisel, in effect questioned
CTT-P, with Kreisel stating: “There is no
evidence that even present-day quan-
tum theory is a mechanistic, i.e., recur-
sive theory in the sense that a recur-
sively described system has recursive
behavior.”27 Other potential counterex-
amples to CTT-P have been described
by a number of authors, including what
are called “relativistic” machines. First
introduced by Pitowsky,32 they will be
examined in the section called “Relativ-
istic Computation.”

CTT-P and Quantum Mechanics
There are a number of theoretical coun-
termodels to CTT-P arising from quan-
tum mechanics. For example, in 1964,
Komar26 raised “the issue of the macro-
scopic distinguishability of quantum
states,” asserting there is no effective
procedure “for determining whether
two arbitrarily given physical states can
be superposed to show interference ef-
fects.” In 2012, Eisert et al.19 showed
“[T]he very natural physical problem of
determining whether certain outcome
sequences cannot occur in repeated
quantum measurements is undecid-
able, even though the same problem
for classical measurements is readily
decidable.” This is an example of a prob-
lem that refers unboundedly to the fu-
ture but not to any specific time. Other
typical physical problems take the same
form; Pitowsky gave as examples “Is the
solar system stable?” and “Is the mo-
tion of a given system, in a known initial
state, periodic?”

Cubitt et al.14 described another such
undecidability result in a 2015 Nature
article, outlining their proof that “[T]he

Cobham-Edmonds thesis, while Yao40
introduced the term “Extended Church-
Turing thesis.” The thesis is of interest
only if P ≠ NP, since otherwise it is trivial.

Quantum-computation researchers
also use a variant of this thesis, as ex-
pressed in terms of probabilistic Turing
machines. Bernstein and Vazirani3 said:
“[C]omputational complexity theory
rests upon a modern strengthening of
[the Church-Turing] thesis, which as-
serts that any ‘reasonable’ model of
computation can be efficiently simulat-
ed on a probabilistic Turing machine.”3

Aharonov and Vazirani1 give the fol-
lowing formulation of this assumption,
naming it the “Extended Church-Turing
thesis”—though it is not quite the same
as Yao’s earlier thesis of the same name,
which did not refer to probabilistic Tur-
ing machines:

CTT-Extended (CTT-E). “[A]ny reason-
able computational model can be simu-
lated efficiently by the standard model
of classical computation, namely, a
probabilistic Turing machine.”1

As is well known in computer science,
Peter Shor’s quantum algorithm for
prime factorization is a potential coun-
terexample to CTT-E; the algorithm runs
on a quantum computer in polynomial
time and is much faster than the most-
efficient known “classical” algorithm
for the task. But the counterexample is
controversial. Some computer scientists
think the quantum computer invoked
is not a physically reasonable model of
computation, while others think accom-
modating these results might require
further modifications to complexity
theory.

We turn now to extensions of the
Church-Turing thesis into physics.

Physical Computability
The issue of whether every aspect of the
physical world is Turing-computable
was broached by several authors in the
1960s and 1970s, and the topic rose to
prominence in the mid-1980s.

In 1985, Stephen Wolfram formu-
lated a thesis he described as “a physical
form of the Church-Turing hypothesis,”
saying, “[U]niversal computers are as
powerful in their computational capaci-
ties as any physically realizable system
can be, so that they can simulate any
physical system.”39 In the same year, Da-
vid Deutsch, who laid the foundations of
quantum computation, independently

stated a similar thesis, describing it as
“the physical version of the Church-
Turing principle.”17 The thesis is now
known as the Church-Turing-Deutsch
thesis and the Church-Turing-Deutsch-
Wolfram thesis.

Church-Turing-Deutsch-Wolfram the-
sis (CTDW). Every finite physical system
can be simulated to any specified de-
gree of accuracy by a universal Turing
machine.

Deutsch pointed out that if “simu-
lated” is understood as “perfectly simu-
lated,” then the thesis is falsified by con-
tinuous classical systems, since such
classical systems necessarily involve un-
computable real numbers, and went on
to introduce the concept of a universal
quantum computer, saying such a com-
puter is “capable of perfectly simulating
every finite, realizable physical system.”
Other physical formulations were ad-
vanced by Lenore Blum et al., John Ear-
man, Itamar Pitowsky, Marian Pour-El,
and Ian Richards, among others.

We next formulate a strong version
of the physical Church-Turing thesis we
call the “total physical computability
thesis.” (We consider some weaker ver-
sions later in the article.) By “physical
system” we mean any system whose be-
havior is in accordance with the actual
laws of physics, including non-actual
and idealized systems.

Total physical computability thesis
(CTT-P). Every physical aspect of the
behavior of any physical system can be
calculated (to any specified degree of ac-
curacy) by a universal Turing machine.

As with CTT-E, there is also a proba-
bilistic version of CTT-P, formulated in
terms of a probabilistic Turing machine.

Arguably, the phrase “physical ver-
sion of the Church-Turing thesis” is an
inappropriate name for this and related
theses, since CTT-O concerns a form of
effective or algorithmic activity and as-
serts the activity is always bounded by
Turing computability, while CTT-P and
CTDW, on the other hand, entail that
the activity of every physical system is
bounded by Turing computability; the
system’s activity need not be algorith-
mic/effective at all. Nevertheless, in our
“CTT-” nomenclature, we follow the
Deutsch-Wolfram tradition throughout
this article.

Is CTT-P true? Not if physical systems
include systems capable of producing
unboundedly many digits of a random

72 COMMUNICATIONS OF THE ACM | JANUARY 2019 | VOL. 62 | NO. 1

contributed articles

admitted the model invoked in their
proof is highly artificial, saying, “Wheth-
er the results can be extended to more
natural models is yet to be determined.”
There is also the question of whether the
spectral gap problem becomes comput-
able when only local Hilbert spaces of
realistically low dimensionality are con-
sidered. Nevertheless, these results are
certainly suggestive: CTT-P cannot be
taken for granted, even in a finite quan-
tum universe.

Summarizing the current situa-
tion with respect to CTT-P, we can say,
although theoretical countermodels
in which CTT-P is false have been de-
scribed, there is at present—so far as
we know—not a shred of evidence that
CTT-P is false in the actual universe. Yet
it would seem most premature to assert
that CTT-P is true.

Weaker Physical
Computability Theses
Piccinini31 has distinguished between
two different types of physical versions
of the Church-Turing thesis, both com-
monly found in the literature, describ-
ing them as “bold” and “modest” ver-
sions of the thesis, respectively. The
bold and modest versions are weaker
than our “super-bold” version just dis-
cussed (CTT-P). Bold versions of the
thesis state, roughly, that “Any physical
process can be simulated by some Tur-
ing machine.”31 The Church-Turing-
Deutsch-Wolfram thesis (CTDW) is an
example, though Piccinini emphasized
that the bold versions proposed by dif-
ferent researchers are often “logically
independent of one another” and that,
unlike the different formulations of
CTT-O, which exhibit confluence, the
different bold formulations in fact ex-
hibit “lack of confluence.”31

CTDW and other bold forms are too

weak to rule out the uncomputabil-
ity scenarios described by Cubitt et al.14
and by Eisert et al.19 This is because the
physical processes involved in these
scenarios may, so far as we know, be
Turing-computable; it is possible that
each process can be simulated by a Tur-
ing machine, to any required degree
of accuracy, and yet the answers to cer-
tain physical questions about the pro-
cesses are, in general, uncomputable.
The situation is similar in the case of
the universal Turing machine itself. The
machine’s behavior (consisting of the
physical actions of the read/write head)
is always Turing-computable since it is
produced by the Turing machine’s pro-
gram, yet the answers to some questions
about the behavior (such as whether or
not the machine halts given certain in-
puts) are not computable.

Nevertheless, bold forms (such as
CTDW) are interesting empirical hy-
potheses in their own right and the
world might confute them. For in-
stance, CTDW fails in the wave-equa-
tion countermodel due to Pour-El and
Richards34 where the mapping between
the wave equation’s “inputs” and “out-
puts” is not a Turing-computable (real)
function; although, as noted earlier, the
physicality of this countermodel can
readily be challenged. We discuss some
other potential countermodels later in
the article, but turn first to what Picci-
nini termed “modest” versions of the
thesis.

Modest versions maintain in es-
sence that every physical computing
process is Turing-computable; for two
detailed formulations, see Gandy20 and
Copeland.8 Even if CTT-P and CTDW
are in general false, the behavior of the
subset of physical systems that are ap-
propriately described as computing sys-
tems may nevertheless be bounded by
Turing-computability. An illustration of
the difference between modest versions
on the one hand and CTT-P and CTDW
on the other is given by the fact that the
wave-equation example is not a counter-
model to the modest thesis, assuming,
as seems reasonable, that the physical
dynamics described by the equation do
not constitute a computing process.

Here, we formulate a modest version
of the physical Church-Turing thesis we
call the “Physical Computation” thesis,
then turn to the question of whether it
is true.

spectral gap problem is algorithmically
undecidable: There cannot exist any al-
gorithm that, given a description of the
local interactions, determines whether
the resultant model is gapped or gap-
less.” Cubitt et al. also said this is the
“first undecidability result for a major
physics problem that people would re-
ally try to solve.”

The spectral gap, an important deter-
minant of a material’s properties, refers
to the energy spectrum immediately
above the ground-energy level of a quan-
tum many-body system, assuming a
well-defined least-energy level of the sys-
tem exists; the system is said to be “gap-
less” if this spectrum is continuous and
“gapped” if there is a well-defined next-
least energy level. The spectral gap prob-
lem for a quantum many-body system is
the problem of determining whether the
system is gapped or gapless, given the fi-
nite matrices (at most three) describing
the local interactions of the system.

In their proof, Cubitt et al.14 encoded
the halting problem in the spectral gap
problem, showing the latter is at least as
hard as the former. The proof involves
an infinite family of two-dimensional
lattices of atoms. But they pointed out
their result also applies to finite systems
whose size increases, saying, “Not only
can the lattice size at which the system
switches from gapless to gapped be arbi-
trarily large, the threshold at which this
transition occurs is uncomputable.”
Their proof offers an interesting coun-
termodel to CTT-P, involving a physical-
ly relevant example of a finite system of
increasing size. There exists no effective
method for extrapolating the system’s
future behavior from (complete descrip-
tions of) its current and past states.

It is debatable whether any of these
quantum models correspond to real-
world quantum systems. Cubitt et al.14

Relationships between the three physical computability theses: CTT-P, CTDW, and CTT-P-C.

Physical computability theses

super-bold

bold

modest

CTT-P

CTDW

CTTP-P-C

Total Physical Computability Thesis

Church-Turing-Deutsch-Wolfram Thesis

Physical Computation Thesis

JANUARY 2019 | VOL. 62 | NO. 1 | COMMUNICATIONS OF THE ACM 73

contributed articles

nal will have been received by TO before
time t. So TO will fall into the black hole
with 1 in its output cell if TE halted and
0 if TE never halted. Fortunately, TO can
escape annihilation if its trajectory is
carefully chosen in advance, says Néme-
ti; the rotational forces of the Kerr hole
counterbalance the gravitational forces
that would otherwise “spaghettify” TO.
TO thus emerges unscathed from the
hole and goes on to use the computed
value of the halting function in further
computations.

Németi and colleagues emphasize
their machine is physical in the sense
it is “not in conflict with presently ac-
cepted scientific principles” and, in par-
ticular, “the principles of quantum me-
chanics are not violated.”2 They suggest
humans might “even build” a relativistic
computer “sometime in the future.”2
This is, of course, highly controversial.
However, our point is that Németi’s the-
oretical countermodel, which counters
not only CTT-P-C but also CTT-P and
CTDW, helps underscore that the “phys-
ical version of the Church-Turing thesis”
is quite independent of CTT-O, since the
countermodel stands whether or not
CTT-O is endorsed. We next reconsider
CTT-A.

CTT-A and Computation in the Broad
The continuing expansion of the con-
cept of an algorithm is akin to the exten-
sion of the concept of number from inte-
gers to signed integers to rational, real,
and complex numbers. Even the con-
cept of human computation underwent
an expansion; before 1936, computation
was conceived of in terms of total func-
tions, and it was Kleene in 1938 who ex-
plicitly extended the conception to also
cover partial functions.

Gurevich argued in 2012 that formal
methods cannot capture the algorithm
concept in its full generality due to the
concept’s open-ended nature; at best,
formal methods provide treatments of
“strata of algorithms” that “have ma-
tured enough to support rigorous defi-
nitions.”22 An important question for
computer science is whether CTT-A is
a reasonable constraint on the growth
of new strata. Perhaps not. In 1982,
Jon Doyle18 suggested equilibrating
systems with discrete spectra (such as
molecules and other quantum many-
body systems) illustrate a concept of
effectiveness that is broader than the

Physical Computation Thesis
This form of the thesis maintains that
physical computation is bounded by
Turing-computability.

Physical computation thesis (CTT-P-C).
Every function computed by any physi-
cal computing system is Turing-com-
putable.

Is CTT-P-C true? As with the stronger
physical computability theses, it seems
too early to say. CTT-P-C could be false
only if CTT-P and CTDW turn out to be
false, since each of them entails CTT-P-
C (see the figure here, which outlines the
relationships among CTT-P, CTDW, and
CTT-P-C). If all physical computation
is effective in the 1930s sense of Turing
and Church, then CTT-P-C is certainly
true. If, however, the door is open to a
broadened sense of computation, where
physical computation is not necessarily
effective in the sense of being bounded
by Turing-computability, then CTT-P-C
makes a substantive claim.

There is, in fact, heated debate
among computer scientists and phi-
losophers about what counts as physi-
cal computation. Moreover, a number
of attempts have sought to describe a
broadened sense of computation in
which computation is not bounded
by Turing-computability; see, for ex-
ample, Copeland.6 Computing ma-
chines that compute “beyond the Tur-
ing limit” are known collectively as
“hypercomputers,” a term introduced
in Copeland and Proudfoot.11 Some of
the most thought-provoking examples
of notional machines that compute in
the broad sense are called “supertask”
machines. These “Zeno computers”
squeeze infinitely many computational
steps into a finite span of time. Exam-
ples include accelerating machines,7,12
shrinking machines, and the intrigu-
ing relativistic computers described in
the next section.

Notional machines all constitute
rather theoretical countermodels to
CTT-P-C, so long as it is agreed that
they compute in a broadened sense, but
none has been shown to be physically
realistic, although, as we explain, rela-
tivistic computers come close. In short,
the truth or falsity of CTT-P-C remains
unsettled.

Relativistic Computation
Relativistic machines operate in space-
time structures with the property that

the entire endless lifetime of one com-
ponent of the machine is included in
the finite chronological past of another
component, called “the observer.” The
first component could thus carry out an
infinite computation (such as calculat-
ing every digit of π) in what is, from the
observer’s point of view, a finite times-
pan of, say, one hour. (Such machines
are in accord with Einstein’s general the-
ory of relativity, hence the term “relativ-
istic.”) Examples of relativistic compu-
tation have been detailed by Pitowsky,
Mark Hogarth, and Istvan Németi.

In this section we outline a relativistic
machine RM consisting of a pair of com-
municating Turing machines, TE and
TO, in relative motion. TE is a universal
machine, and TO is the observer. RM is
able to compute the halting function, in
a broad sense of computation. Speaking
of computation here seems appropriate,
since RM consists of nothing but two
communicating Turing machines.

Here is how RM works. When the in-
put (m,n), asking whether the mth Tur-
ing machine (in some enumeration
of the Turing machines) halts or not
when started on input n, enters TO, TO
first prints 0 (meaning “never halts”)
in its designated output cell and then
transmits (m,n) to TE. TE simulates the
computation performed by the mth Tur-
ing machine when started on input
n and sends a signal back to TO if and
only if the simulation terminates. If
TO receives a signal from TE, TO deletes
the 0 it previously wrote in its output
cell and writes 1 in its place (meaning
“halts”). After one hour, TO’s output
cell shows 1 if the mth Turing machine
halts on input n and shows 0 if the mth
machine does not halt on n.

The most physically realistic version
of this setup to date is due to Németi and
his collaborators in Budapest. TE, an or-
dinary computer, remains on Earth,
while the observer TO travels toward and
enters a slowly rotating Kerr black hole.
TO approaches the outer event horizon,
a bubble-like hypersurface surrounding
the black hole. Németi theorized that
the closer TO gets to the event horizon,
the faster TE’s clock runs relative to TO
due to Einsteinian gravitational time di-
lation, and this speeding up continues
with no upper limit. TO motion proceeds
until, relative to a time t on TO clock, the
entire span of TE’s computing is over.
If any signal was emitted by TE, the sig-

74 COMMUNICATIONS OF THE ACM | JANUARY 2019 | VOL. 62 | NO. 1

contributed articles

Conclusion
In the computational literature the term
“Church-Turing thesis” is applied to a
variety of different propositions usu-
ally not equivalent to the original the-
sis—CTT-O; some even go far beyond
anything either Church or Turing wrote.
Several but not all are fundamental as-
sumptions of computer science. Others
(such as the various physical comput-
ability theses we have discussed) are im-
portant in the philosophy of computing
and the philosophy of physics but are
highly contentious; indeed, the label
“Church-Turing thesis” should not mis-
lead computer scientists or anyone else
into thinking they are established fact
or even that Church or Turing endorsed
them. 	

References
1.	 Aharonov, D. and Vazirani, U.V. Is quantum mechanics

falsifiable? A computational perspective on the
foundations of quantum mechanics. Chapter in
Computability: Gödel, Turing, Church and Beyond, B.J.
Copeland, C.J. Posy, and O. Shagrir, Eds. MIT Press,
Cambridge, MA, 2013.

2.	 Andréka, H., Németi, I., and Németi, P. General relativistic
hypercomputing and foundation of mathematics. Natural
Computing 8, 3 (Sept. 2009), 499–516.

3.	 Bernstein, E. and Vazirani, U. Quantum complexity
theory. SIAM Journal on Computing 26, 5 (Oct. 1997),
1411–1473.

4.	 Castelvecchi, D. Paradox at the heart of mathematics
makes physics problem unanswerable. Nature 528
(Dec. 9, 2015), 207.

5.	 Church, A. An unsolvable problem of elementary
number theory. American Journal of Mathematics 58,
2 (Apr. 1936), 345–363.

6.	 Copeland, B.J. The broad conception of computation.
American Behavioral Scientist 40, 6 (May 1997),
690–716.

7.	 Copeland, B.J. Even Turing machines can compute
uncomputable functions. Chapter in Unconventional
Models of Computation, C. Calude, J. Casti, and M.
Dinneen, Eds. Springer, Singapore, 1998.

8.	 Copeland, B.J. Narrow versus wide mechanism:
Including a re-examination of Turing’s views on the
mind-machine issue. The Journal of Philosophy 97, 1
(Jan. 2000), 5–32.

9.	 Copeland, B.J. Hypercomputation. Minds and Machines
12, 4 (Nov. 2002), 461–502.

10.	 Copeland, B.J. The Essential Turing: Seminal Writings
in Computing, Logic, Philosophy, Artificial Intelligence,
and Artificial Life, Plus the Secrets of Enigma. Oxford
University Press, Oxford, U.K., 2004.

11.	 Copeland, B.J. and Proudfoot, D. Alan Turing’s
forgotten ideas in computer science. Scientific
American 280, 4 (Apr. 1999), 98–103.

12.	 Copeland, B.J. and Shagrir, O. Do accelerating Turing
machines compute the uncomputable? Minds and
Machines 21, 2 (May 2011), 221–239.

13.	 Copeland, B.J. and Shagrir, O. Turing versus Gödel on
computability and the mind. Chapter in Computability:
Gödel, Turing, Church, and Beyond, B.J. Copeland,
C.J. Posy, and O. Shagrir, Eds. MIT Press, Cambridge,
MA, 2013.

14.	 Cubitt, T.S., Perez-Garcia, D., and Wolf, M.M.
Undecidability of the spectral gap. Nature 528, 7581
(Dec. 2015), 207–211.

15.	 Davis, M. Why Gödel didn’t have Church’s thesis.
Information and Control 54, 1-2 (July 1982), 3–24.

16.	 Dershowitz, N. and Gurevich, Y. A natural
axiomatization of computability and proof of Church’s
thesis. Bulletin of Symbolic Logic 14, 3 (Sept. 2008),
299–350.

17.	 Deutsch, D. Quantum theory, the Church-Turing
principle and the universal quantum computer.
Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences 400,
1818 (July 1985), 97–117.

18.	 Doyle, J. What is Church’s thesis? An outline. Minds
and Machines 12, 4 (Nov. 2002), 519–520.

19.	 Eisert, J., Müller, M.P., and Gogolin, C. Quantum
measurement occurrence is undecidable. Physical
Review Letters 108, 26 (June 2012), 1–5.

20.	 Gandy, R.O. Church’s thesis and principles for
mechanisms. In Proceedings of the Kleene
Symposium, J. Barwise, H.J. Keisler, and K. Kunen,
Eds. (Madison, WI, June 1978). North-Holland,
Amsterdam, Netherlands, 1980.

21.	 Goldreich, O. Computational Complexity: A Conceptual
Perspective. Cambridge University Press, New York, 2008.

22.	 Gurevich, Y. What is an algorithm? In Proceedings of
the 38th Conference on Current Trends in the Theory
and Practice of Computer Science (Špindleůrv Mlýn,
Czech Republic, Jan. 21–27), M. Bieliková, G. Friedrich,
G. Gottlob, S. Katzenbeisser, and G. Turán, Eds.
Springer, Berlin, Heidelberg, Germany, 2012.

23.	 Harel, D. Algorithmics: The Spirit of Computing,
Second Edition. Addison-Wesley, Reading, MA, 1992.

24.	 Hopcroft, J.E. and Ullman, J.D. Introduction to
Automata Theory, Languages, and Computation.
Addison-Wesley, Reading, MA, 1979.

25.	 Kleene, S.C. Introduction to Metamathematics. Van
Nostrand, New York, 1952.

26.	 Komar, A. Undecidability of macroscopically
distinguishable states in quantum field theory.
Physical Review 133, 2B (Jan. 1964), 542–544.

27.	 Kreisel, G. Mathematical logic: What has it done for
the philosophy of mathematics? Chapter in Bertrand
Russell: Philosopher of the Century, R. Schoenman, Ed.
Allen and Unwin, London, U.K., 1967.

28.	 Kripke, S.A. Another approach: The Church-Turing
‘thesis’ as a special corollary of Gödel’s completeness
theorem. Chapter in Computability: Gödel, Turing,
Church, and Beyond, B.J. Copeland, C.J. Posy, and O.
Shagrir, Eds. MIT Press, Cambridge, MA, 2013.

29.	 Lewis, H.R. and Papadimitriou, C.H. Elements of the
Theory of Computation. Prentice Hall, Upper Saddle
River, NJ, 1981.

30.	 Moschovakis, Y.N. and Paschalis, V. Elementary
algorithms and their implementations. Chapter in New
Computational Paradigms: Changing Conceptions of
What Is Computable, S.B. Cooper, B. Lowe, and A.
Sorbi, Eds. Springer, New York, 2008.

31.	 Piccinini, G. The physical Church-Turing thesis: Modest
or bold? The British Journal for the Philosophy of
Science 62, 4 (Aug. 2011), 733–769.

32.	 Pitowsky, I. The physical Church thesis and physical
computational complexity. Iyyun 39, 1 (Jan. 1990), 81–99.

33.	 Post, E.L. Finite combinatory processes: Formulation
I. The Journal of Symbolic Logic 1, 3 (Sept. 1936),
103–105.

34.	 Pour-El, M.B. and Richards, I.J. The wave equation
with computable initial data such that its unique
solution is not computable. Advances in Mathematics
39, 3 (Mar. 1981), 215–239.

35.	 Sieg, W. Mechanical procedures and mathematical
experience. Chapter in Mathematics and Mind, A.
George, Ed. Oxford University Press, New York, 1994.

36.	 Turing, A.M. On computable numbers, with an
application to the Entscheidungsproblem (1936); in
Copeland.10

37.	 Turing, A.M. Lecture on the Automatic Computing
Engine (1947); in Copeland.10

38.	 Turing, A.M. Intelligent Machinery (1948); in
Copeland.10

39.	 Wolfram, S. Undecidability and intractability in
theoretical physics. Physical Review Letters 54, 8 (Feb.
1985), 735–738.

40.	Yao, A.C.C. Classical physics and the Church-Turing
thesis. Journal of the ACM 50, 1 (Jan. 2003), 100–105.

B. Jack Copeland (jack.copeland@canterbury.ac.nz) is
Distinguished Professor of Philosophy at the University of
Canterbury in Christchurch, New Zealand, and Director of
the Turing Archive for the History of Computing, also at
the University of Canterbury.

Oron Shagrir (oron.shagrir@gmail.com) is Schulman
Professor of Philosophy and Cognitive Science at the
Hebrew University of Jerusalem, Jerusalem, Israel.

Copyright held by the authors.
Publication rights licensed to ACM. $15.00

classical concept, saying, “[E]quilibrat-
ing can be so easily, reproducibly, and
mindlessly accomplished” that we may
“take the operation of equilibrating as
an effective one,” even if “the functions
computable in principle given Turing’s
operations and equilibrating include
non-recursive functions.”

Over the years, there have been sever-
al departures from Turing’s 1936 analy-
sis, as the needs of computer science
led to a broadening of the algorithm
concept. For example, Turing’s fourth
axiom, which bounds the number of
parts of a system that can be changed
simultaneously, became irrelevant
when the algorithm concept broadened
to cover parallel computations. The fu-
ture computational landscape might
conceivably include more extensive re-
visions of the concept, if, for example,
physicists were to discover that hard-
ware effective in Doyle’s extended sense
is a realistic possibility.

If such hardware were to be devel-
oped—hardware in which operations
are effective in the sense of being “eas-
ily, reproducibly, and mindlessly ac-
complished” but not bounded by Turing
computability—then would the appro-
priate response by computer scientists
be to free the algorithm concept from
CTT-A? Or should CTT-A remain as a
constraint on algorithms, with instead
two different species of computation be-
ing recognized, called, say, algorithmic
computation and non-algorithmic com-
putation? Not much rides on a word, but
we note we prefer “effective computa-
tion” for computation that is bounded
by Turing computability and “neo-ef-
fective computation” for computation
that is effective in Doyle’s sense and not
bounded by Turing computability, with
“neo” indicating a new concept related
to an older one.

The numerous examples of notional
“hypercomputers” (see Copeland9 for
a review) prompt similar questions. In-
terestingly, a study of the expanding lit-
erature about the concept of an infinite-
time Turing machine, introduced by
Joel Hamkins and Andy Lewis in 2000,
shows that a number of computer sci-
entists are prepared to describe the in-
finite-time machine as computing the
halting function. Perhaps this indicates
the concept of computation is already
in the process of bifurcating into “effec-
tive” and “neo-effective” computation.

