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THE CHURCH-TURING THESIS (CTT) underlies tantalizing 
open questions concerning the fundamental place 
of computing in the physical universe. For example, 
is every physical system computable? Is the universe 
essentially computational in nature? What are the 
implications for computer science of recent speculation 
about physical uncomputability? Does CTT place a 
fundamental logical limit on what can be computed, 
a computational “barrier” that cannot be broken, no 
matter how far and in what multitude of ways computers 
develop? Or could new types of hardware, based perhaps 
on quantum or relativistic phenomena, lead to radically 

new computing paradigms that do 
breach the Church-Turing barrier, in 
which the uncomputable becomes com-
putable, in an upgraded sense of “com-
putable”? Before addressing these ques-
tions, we first look back to the 1930s to 
consider how Alonzo Church and Alan 
Turing formulated, and sought to jus-
tify, their versions of CTT. With this nec-
essary history under our belts, we then 
turn to today’s dramatically more pow-
erful versions of CTT. 

History of the Thesis 
Turing stated what we will call “Turing’s 
thesis” in various places and with vary-
ing degrees of rigor. The following for-
mulation is one of his most accessible. 

Turing’s thesis. “L.C.M.s [logical com-
puting machines, Turing’s expression 
for Turing machines] can do anything 
that could be described as … ‘purely me-
chanical’.”38 

Turing also formulated his thesis 
in terms of numbers. For example, he 
said, “It is my contention that these op-
erations [the operations of an L.C.M.] 
include all those which are used in 
the computation of a number.”36 and  
“[T]he ‘computable numbers’ include 
all numbers which would naturally be 
regarded as computable.”36 

Church (who, like Turing, was work-
ing on the German mathematician 
David Hilbert’s Entscheidungsproblem) 
advanced “Church’s thesis,” which he 
expressed in terms of definability in his 
lambda calculus. 

Church’s thesis. “We now define the 
notion … of an effectively calculable 
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function of positive integers by iden-
tifying it with the notion of a recursive 
function of positive integers (or of a 
λ-definable function of positive inte-
gers).”5 

Church chose to call this a definition. 
American mathematician Emil Post, on 
the other hand, referred to Church’s the-
sis as a “working hypothesis” and criti-
cized Church for masking it in the guise 
of a definition.33 

Upon learning of Church’s “defi-

nition,” Turing quickly proved that 
λ-definability and his own concept of 
computability (over positive integers) 
are equivalent. Church’s thesis and Tur-
ing’s thesis are thus equivalent, if atten-
tion is restricted to functions of positive 
integers. (Turing’s thesis, more gen-
eral than Church’s, also encompassed 
computable real numbers.) However, 
it is important for a computer scientist 
to appreciate that despite this exten-
sional equivalence, Turing’s thesis and 

Church’s thesis have distinct meanings 
and so are different theses, since they 
are not intensionally equivalent. A lead-
ing difference in their meanings is that 
Church’s thesis contains no reference 
to computing machinery, whereas Tur-
ing’s thesis is expressed in terms of the 
“Turing machine,” as Church dubbed it 
in his 1937 review of Turing’s paper. 

It is now widely understood that 
Turing introduced his machines with 
the intention of providing an idealized 

Is everything in the physical universe computable? Hubble Space Telescope view of the Pillars of Creation in the Eagle Nebula. 
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each going far beyond CTT-O. First, we 
look more closely at the algorithmic 
form of thesis, as stated to a first approx-
imation by Lewis and Papadimitriou29: 
“[W]e take the Turing machine to be a 
precise formal equivalent of the intuitive 
notion of ‘algorithm’.” 

What Is an Algorithm? 
The range of algorithmic processes 
studied in modern computer science 
far transcends the range of processes 
a Turing machine is able to carry out. 
The Turing machine is restricted to, say, 
changing at most one bounded part at 
each sequential step of a computation. 
As Yuri Gurevich pointed out, the con-
cept of an algorithm keeps evolving: “We 
have now parallel, interactive, distrib-
uted, real-time, analog, hybrid, quan-
tum, etc. algorithms.”22 There are en-
zymatic algorithms, bacterial foraging 
algorithms, slime-mold algorithms, and 
more. The Turing machine is incapable 
of performing the atomic steps of algo-
rithms carried out by, say, an enzymatic 
system (such as selective enzyme bind-
ing) or a slime mold (such as pseudopod 
extension). The Turing machine is simi-
larly unable to duplicate (as opposed to 
simulate) John Conway’s Game of Life, 
where—unlike a Turing machine—ev-
ery cell updates simultaneously. 

A thesis aiming to limit the scope 
of algorithmic computability to Turing 
computability should thus not state 
that every possible algorithmic process 
can be performed by a Turing machine. 
The way to express the thesis is to say 
the extensional input-output function 
ια associated with an algorithm α is al-
ways Turing-computable; ια is simply 
the extensional mapping of α’s inputs 
to α’s outputs. The algorithm the Tur-
ing machine uses to compute ια might 
be very different from α itself. A ques-
tion then naturally arises: If an algo-
rithmic process need not be one a Tur-
ing machine can carry out, save in the 
weak sense just mentioned, then where 
do the boundaries of this concept lie? 
What indeed is an algorithm? 

The dominant view in computer sci-
ence is that, ontologically speaking, al-
gorithms are abstract entities; however, 
there is debate about what abstract en-
tities algorithms are. Gurevich defined 
the concept in terms of abstract-state 
machines, Yiannis Moschovakis in 
terms of abstract recursion, and Noson 

Yanofsky in terms of equivalence class-
es of programs, while Moshe Vardi has 
speculated that an algorithm is both 
abstract-state machine and recursor. It 
is also debated whether an algorithm 
must be physically implementable. Mos-
chovakis and Vasilis Paschalis (among 
others) adopt a concept of algorithm “so 
wide as to admit ‘non-implementable’ 
algorithms,”30 while other approaches 
do impose a requirement of physical im-
plementability, even if only a very mild 
one. David Harel, for instance, writes: 
[A]ny algorithmic problem for which we 
can find an algorithm that can be pro-
grammed in some programming lan-
guage, any language, running on some 
computer, any computer, even one that 
has not been built yet but can be built 
… is also solvable by a Turing machine. 
This statement is one version of the so-
called Church/Turing thesis.”23 

Steering between these debates—
and following Harel’s suggestion that 
the algorithms of interest to computer 
science are always expressible in pro-
gramming languages—we arrive at the 
following program-oriented formula-
tion of the algorithmic thesis: 

CTT-Algorithm (CTT-A). Every algo-
rithm can be expressed by means of a 
program in some (not necessarily cur-
rently existing) Turing-equivalent pro-
gramming language. 

There is an option to narrow CTT-A 
by adding “physically implementable” 
before “program,” although in our view 
this would be to lump together two dis-
tinct computational issues that are bet-
ter treated separately. 

The evolving nature and open-end-
edness of the concept of an algorithm is 
matched by a corresponding open-end-
edness in the concept of a programming 
language. But this open-endedness not-
withstanding, CTT-A requires that all 
algorithms be bounded by Turing com-
putability. 

Later in this article we examine com-
plexity-theoretic and physical versions 
of the Church-Turing thesis but first 
turn to the question of the justification 
of the theses introduced so far. Are CTT-
O and CTT-A correct? 

What Justifies the  
Church-Turing Thesis? 
Stephen Kleene—who coined the term 
“Church-Turing thesis”—catalogued 
four types of argument for CTT-O: First, 

description of a certain human activ-
ity—numerical computation; in Tur-
ing’s day computation was carried out 
by rote workers called “computers,” or, 
sometimes, “computors”; see, for exam-
ple, Turing.37 The Church-Turing thesis 
is about computation as the term was 
used in 1936—human computation. 
Church’s term “effectively calculable 
function” was intended to refer to func-
tions that are calculable by an idealized 
human computer; and, likewise, Tur-
ing’s phrase “numbers which would 
naturally be regarded as computable” 
was intended to refer to those numbers 
that could be churned out, digit by digit, 
by an idealized human computer work-
ing ceaselessly. 

Here, then, is our formulation of 
the historical version of the Church-
Turing thesis, as informed by Turing’s 
proof of the equivalence of his and 
Church’s theses: 

CTT-Original (CTT-O). Every function 
that can be computed by the idealized 
human computer, which is to say, can 
be effectively computed, is Turing-com-
putable. 

Some mathematical logicians view 
CTT-O as subject ultimately to either 
mathematical proof or mathemati-
cal refutation, like open mathematical 
conjectures, as in the Riemann hypoth-
esis, while others regard CTT-O as not 
amenable to mathematical proof but 
supported by philosophical arguments 
and an accumulation of mathematical 
evidence. Few logicians today follow 
Church in regarding CTT-O as a defini-
tion. We subscribe to Turing’s view of 
the status of CTT-O, as we outline later. 

In computer science today, algo-
rithms and effective procedures are, of 
course, associated not primarily with 
humans but with machines. (Note, while 
some expositors might distinguish be-
tween the terms “algorithm” and “ef-
fective procedure,” we use the terms in-
terchangeably.) Many computer science 
textbooks formulate the Church-Turing 
thesis without mentioning human com-
puters at all; examples include the well-
known books by Hopcroft and Ullman24 
and Lewis and Papadimitriou.29 This is 
despite the fact that the concept of hu-
man computation was at the heart of 
both Turing’s and Church’s analysis of 
computation. 

We discuss several important mod-
ern forms of the Church-Turing thesis, 
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employs the Schönfinkel-Curry idea of 
“combinators” in order to axiomatize 
the concept of an algorithmic function.) 

Fourth in this catalog of consider-
ations supporting CTT-O are arguments 
from first-order logic. They are typified 
by a 1936 argument of Church’s and 
by Turing’s argument II, from Section 
9 of Turing’s 1936 paper. In 2013, Saul 
Kripke28 presented a reconstruction 
of Turing’s argument II, which goes as 
follows: Computation is a special form 
of mathematical deduction; and every 
mathematical deduction—and there-
fore every computation—can be formal-
ized as a valid deduction in the language 
of first-order predicate logic with iden-
tity (a step Kripke referred to as “Hil-
bert’s thesis”); following Gödel’s com-
pleteness theorem, each computation 
is thus formalized by a provable formula 
of first-order logic; and every computa-
tion can therefore be carried out by the 
universal Turing machine. This last step 
regarding the universal Turing machine 
is secured by a theorem proved by Tur-
ing: Every provable formula of first-order 
logic can be proved by the universal Tur-
ing machine. 

The third and fourth of these argu-
ments provide justification for CTT-O 
but not for CTT-A. As Robin Gandy20 
pointed out, the third argument—Tur-
ing’s I—contains “crucial steps … where 
he [Turing] appeals to the fact that the 
calculation is being carried out by a hu-
man being.”20 For example, Turing as-
sumed “a human being can only write 
one symbol at a time,” and Gandy noted 
this assumption cannot be carried over 
to a parallel machine that “prints an ar-
bitrary number of symbols simultane-
ously.”20 In Conway’s Game of Life, for 
instance, there is no upper bound on 
the number of cells that make up the 
grid, yet the symbols in all the cells are 
updated simultaneously. Likewise, the 
fourth argument (Turing’s II) involves 
the claim that computation is a special 
form of formal proof, but the notion of 
proof is intrinsically related to what a 
human mathematician—and not some 
oracle—can prove. 

It is thus perhaps not too surprising 
that the third and fourth arguments 
in this catalog seldom if ever appear in 
logic and computer science textbooks. 
The two arguments that are always given 
for the Church-Turing thesis (in, for ex-
ample, Lewis and Papadimitriou29) are 

the argument from non-refutation 
points out the thesis has never been 
refuted, despite sustained (and ongo-
ing) attempts to find a counterexample 
(such as the attempts by László Kalmár 
and, more recently, by Doukas Kapan-
tais). Second, the argument from con-
fluence points to the fact that the vari-
ous characterizations of computability, 
while differing in their approaches and 
formal details, turn out to encompass 
the very same class of computable func-
tions. Four such characterizations were 
presented (independently) in 1936 and 
immediately proved to be extension-
ally equivalent: Turing computability, 
Church’s λ-definability, Kleene’s recur-
sive functions, and Post’s finitary com-
binatory processes. 

Third is an argument usually re-
ferred to nowadays as “Turing’s analy-
sis.” Turing called it simply argument 
“I,” stating five very general and intui-
tive constraints—or axioms—the hu-
man computer may be assumed to 
satisfy: “The behavior of the computer 
at any moment is determined by the 
symbols which he is observing, and his 
‘state of mind’ at that moment”; “[T]
here is a bound B to the number of sym-
bols or squares which the computer 
can observe at one moment”; “[E]ach 
of the new observed squares is within 
L squares of an immediately previously 
observed square”; “[I]n a simple op-
eration not more than one symbol is 
altered”; and “[T]he number of states 
of mind which need be taken into ac-
count is finite.” Turing noted that refer-
ence to the computer’s states of mind 
can be avoided by talking instead about 
configurations of symbols, these being 
“a more definite and physical counter-
part” of states of mind.36 

The second part of Turing’s argu-
ment I is a demonstration that each 
function computed by any human com-
puter subject to these constraints is also 
computable by a Turing machine; it is 
not difficult to see that each of the com-
puter’s steps can be mimicked by the 
Turing machine, either in a single step 
or by means of a series of steps. In short, 
Turing’s five axioms entail CTT-O. (Tur-
ing’s axiomatic approach to comput-
ability was in fact foreshadowed by Kurt 
Gödel in a suggestion to Church a year or 
so earlier.15 Some more recent axiomatic 
approaches to computability proceed 
differently; for example, Erwin Engeler 

The Turing machine 
is restricted to,  
say, changing at  
most one bounded 
part at each 
sequential step  
of a computation. 
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is whether these axioms completely 
capture the concept of a computational 
or algorithmic process, and, so far as 
we see, no one has ever given a rigor-
ous mathematical justification of that 
claim. The axioms may be supported 
by informal arguments, but the whole 
edifice then falls short of mathemati-
cal proof. This is most apparent when 
the informal arguments offered for the 
axioms invoke limitations in the cogni-
tive capacities of human computers, as 
we point out elsewhere.13 A justification 
of the second axiom may, for instance, 
refer to the limitations of human ob-
servation. The axioms most certainly 
lie beyond the scope of mathematical 
demonstration if their truth depends on 
contingent human limitations. Turing 
himself cheerfully appealed to cognitive 
limitations in the course of his analysis, 
saying, for example, “[J]ustification lies 
in the fact that the human memory is 
necessarily limited.”36 

In summary, our answer to “Is CTT-
O mathematically provable?” is: Turing 
thought not and we have found no rea-
son to disagree with him. The various 
historical arguments seem more than 
sufficient to establish CTT-O, but these 
arguments do indeed fall short of math-
ematical proof. 

We next address complexity theoretic 
forms of the Church-Turing thesis, then 
turn to the question of whether CTT-A is 
justified in the context of physically real-
istic computations. 

Complexity: The Extended 
Church-Turing Thesis 
It is striking that the Turing machine 
holds a central place not only in com-
putability theory but also in complexity 
theory, where it is viewed as a universal 
model for complexity classes. 

In complexity theory, the time com-
plexities of any two general and rea-
sonable models of computation are as-
sumed to be polynomially related. But 
what counts as “reasonable”? Aharonov 
and Vazirani1 glossover “reasonable” as 
“physically realizable in principle”; see 
also Bernstein and Vazirani.3 If a com-
putational problem’s time complexity is 
t in some (general and reasonable) mod-
el, then its time complexity is assumed 
to be poly(t) in the single-tape Turing 
machine model; see also Goldreich.21 
This assumption has different names 
in the literature; Goldreich21 called it the 

confluence and non-refutation. Yet both 
those arguments are merely inductive, 
whereas the third and fourth arguments 
are deductive in nature. 

However, a number of attempts have 
sought to extend Turing’s axiomatic 
analysis to machine computation; for 
example, Gandy20 broadened Turing’s 
analysis in such a way that parallel com-
putation is included, while Dershowitz 
and Gurevich16 gave a more general anal-
ysis in terms of abstract state machines. 
We return to the topic of extending the 
analysis to machine computation later 
in this article but first address the im-
portant question of whether CTT-O is 
mathematically provable. 

Is the Thesis  
Mathematically Provable? 
It used to be thought by mathematical 
logicians and others that CTT-O is not 
amenable to formal proof, since it is not 
a mathematically precise statement. 
This is because it pairs an informal 
concept—a “vague intuitive notion,” 
Church called it5—with a precise con-
cept. However, Elliott Mendelson gave 
a powerful critique of this general argu-
ment; and today the view that CTT-O is 
formally provable seems to be gaining 
acceptance; see, for example, Dershow-
itz and Gurevich.16 Inspired by Gandy,20 
Wilfried Sieg35 stated that a tightened 
form of Turing’s argument I proves the 
thesis; and Kripke28 entertained the 
same claim for Turing’s argument II. 

Turing’s own view was that, on the 
contrary, his thesis is not susceptible 
to mathematical proof. He thought his 
arguments I and II, and indeed “[a]ll 
arguments which can be given” for the 
thesis, are “fundamentally, appeals to 
intuition, and for this reason rather un-
satisfactory mathematically.”36 Hilbert’s 
thesis is another example of a proposi-
tion that can be justified only by appeal 
to intuition, and so Kripke’s28 tightened 
form of argument II, far from proving 
CTT-O, merely deduced it from another 
thesis that is also not amenable to math-
ematical proof. 

Much the same can be said about ar-
gument I. If axioms 1–5 are formulated 
in precise mathematical terms, then it is 
certainly provable from them that com-
putation is bounded by Turing comput-
ability; this is probably what Gandy20 
meant when he said Turing’s argument 
I proves a “theorem.” But the real issue 

Turing’s own view 
was that, on the 
contrary, his thesis 
is not susceptible to 
mathematical proof. 
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binary sequence; Church showed such 
sequences are uncomputable, as we 
discussed elsewhere.8 Moreover, specu-
lation that there may be deterministic 
physical processes whose behavior can-
not be calculated by the universal Tur-
ing machine stretches back over several 
decades; for a review, see Copeland.9 In 
1981, Pour-El and Richards34 showed 
that a system evolving from computable 
initial conditions in accordance with 
the familiar three-dimensional wave 
equation is capable of exhibiting be-
havior that falsifies CTT-P; even today, 
however, it is an open question whether 
these initial conditions are physically 
possible. Earlier papers, from the 1960s, 
by Bruno Scarpellini, Arthur Komar, 
and Georg Kreisel, in effect questioned 
CTT-P, with Kreisel stating: “There is no 
evidence that even present-day quan-
tum theory is a mechanistic, i.e., recur-
sive theory in the sense that a recur-
sively described system has recursive 
behavior.”27 Other potential counterex-
amples to CTT-P have been described 
by a number of authors, including what 
are called “relativistic” machines. First 
introduced by Pitowsky,32 they will be 
examined in the section called “Relativ-
istic Computation.” 

CTT-P and Quantum Mechanics 
There are a number of theoretical coun-
termodels to CTT-P arising from quan-
tum mechanics. For example, in 1964, 
Komar26 raised “the issue of the macro-
scopic distinguishability of quantum 
states,” asserting there is no effective 
procedure “for determining whether 
two arbitrarily given physical states can 
be superposed to show interference ef-
fects.” In 2012, Eisert et al.19 showed 
“[T]he very natural physical problem of 
determining whether certain outcome 
sequences cannot occur in repeated 
quantum measurements is undecid-
able, even though the same problem 
for classical measurements is readily 
decidable.” This is an example of a prob-
lem that refers unboundedly to the fu-
ture but not to any specific time. Other 
typical physical problems take the same 
form; Pitowsky gave as examples “Is the 
solar system stable?” and “Is the mo-
tion of a given system, in a known initial 
state, periodic?” 

Cubitt et al.14 described another such 
undecidability result in a 2015 Nature 
article, outlining their proof that “[T]he 

Cobham-Edmonds thesis, while Yao40 
introduced the term “Extended Church-
Turing thesis.” The thesis is of interest 
only if P ≠ NP, since otherwise it is trivial. 

Quantum-computation researchers 
also use a variant of this thesis, as ex-
pressed in terms of probabilistic Turing 
machines. Bernstein and Vazirani3 said: 
“[C]omputational complexity theory 
rests upon a modern strengthening of 
[the Church-Turing] thesis, which as-
serts that any ‘reasonable’ model of 
computation can be efficiently simulat-
ed on a probabilistic Turing machine.”3 

Aharonov and Vazirani1 give the fol-
lowing formulation of this assumption, 
naming it the “Extended Church-Turing 
thesis”—though it is not quite the same 
as Yao’s earlier thesis of the same name, 
which did not refer to probabilistic Tur-
ing machines: 

CTT-Extended (CTT-E). “[A]ny reason-
able computational model can be simu-
lated efficiently by the standard model 
of classical computation, namely, a 
probabilistic Turing machine.”1 

As is well known in computer science, 
Peter Shor’s quantum algorithm for 
prime factorization is a potential coun-
terexample to CTT-E; the algorithm runs 
on a quantum computer in polynomial 
time and is much faster than the most-
efficient known “classical” algorithm 
for the task. But the counterexample is 
controversial. Some computer scientists 
think the quantum computer invoked 
is not a physically reasonable model of 
computation, while others think accom-
modating these results might require 
further modifications to complexity 
theory. 

We turn now to extensions of the 
Church-Turing thesis into physics. 

Physical Computability 
The issue of whether every aspect of the 
physical world is Turing-computable 
was broached by several authors in the 
1960s and 1970s, and the topic rose to 
prominence in the mid-1980s. 

In 1985, Stephen Wolfram formu-
lated a thesis he described as “a physical 
form of the Church-Turing hypothesis,” 
saying, “[U]niversal computers are as 
powerful in their computational capaci-
ties as any physically realizable system 
can be, so that they can simulate any 
physical system.”39 In the same year, Da-
vid Deutsch, who laid the foundations of 
quantum computation, independently 

stated a similar thesis, describing it as 
“the physical version of the Church-
Turing principle.”17 The thesis is now 
known as the Church-Turing-Deutsch 
thesis and the Church-Turing-Deutsch-
Wolfram thesis. 

Church-Turing-Deutsch-Wolfram the-
sis (CTDW). Every finite physical system 
can be simulated to any specified de-
gree of accuracy by a universal Turing 
machine. 

Deutsch pointed out that if “simu-
lated” is understood as “perfectly simu-
lated,” then the thesis is falsified by con-
tinuous classical systems, since such 
classical systems necessarily involve un-
computable real numbers, and went on 
to introduce the concept of a universal 
quantum computer, saying such a com-
puter is “capable of perfectly simulating 
every finite, realizable physical system.” 
Other physical formulations were ad-
vanced by Lenore Blum et al., John Ear-
man, Itamar Pitowsky, Marian Pour-El, 
and Ian Richards, among others. 

We next formulate a strong version 
of the physical Church-Turing thesis we 
call the “total physical computability 
thesis.” (We consider some weaker ver-
sions later in the article.) By “physical 
system” we mean any system whose be-
havior is in accordance with the actual 
laws of physics, including non-actual 
and idealized systems. 

Total physical computability thesis 
(CTT-P). Every physical aspect of the 
behavior of any physical system can be 
calculated (to any specified degree of ac-
curacy) by a universal Turing machine. 

As with CTT-E, there is also a proba-
bilistic version of CTT-P, formulated in 
terms of a probabilistic Turing machine. 

Arguably, the phrase “physical ver-
sion of the Church-Turing thesis” is an 
inappropriate name for this and related 
theses, since CTT-O concerns a form of 
effective or algorithmic activity and as-
serts the activity is always bounded by 
Turing computability, while CTT-P and 
CTDW, on the other hand, entail that 
the activity of every physical system is 
bounded by Turing computability; the 
system’s activity need not be algorith-
mic/effective at all. Nevertheless, in our 
“CTT-” nomenclature, we follow the 
Deutsch-Wolfram tradition throughout 
this article. 

Is CTT-P true? Not if physical systems 
include systems capable of producing 
unboundedly many digits of a random 
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admitted the model invoked in their 
proof is highly artificial, saying, “Wheth-
er the results can be extended to more 
natural models is yet to be determined.” 
There is also the question of whether the 
spectral gap problem becomes comput-
able when only local Hilbert spaces of 
realistically low dimensionality are con-
sidered. Nevertheless, these results are 
certainly suggestive: CTT-P cannot be 
taken for granted, even in a finite quan-
tum universe. 

Summarizing the current situa-
tion with respect to CTT-P, we can say, 
although theoretical countermodels 
in which CTT-P is false have been de-
scribed, there is at present—so far as 
we know—not a shred of evidence that 
CTT-P is false in the actual universe. Yet 
it would seem most premature to assert 
that CTT-P is true. 

Weaker Physical 
Computability Theses 
Piccinini31 has distinguished between 
two different types of physical versions 
of the Church-Turing thesis, both com-
monly found in the literature, describ-
ing them as “bold” and “modest” ver-
sions of the thesis, respectively. The 
bold and modest versions are weaker 
than our “super-bold” version just dis-
cussed (CTT-P). Bold versions of the 
thesis state, roughly, that “Any physical 
process can be simulated by some Tur-
ing machine.”31 The Church-Turing-
Deutsch-Wolfram thesis (CTDW) is an 
example, though Piccinini emphasized 
that the bold versions proposed by dif-
ferent researchers are often “logically 
independent of one another” and that, 
unlike the different formulations of 
CTT-O, which exhibit confluence, the 
different bold formulations in fact ex-
hibit “lack of confluence.”31 

CTDW and other bold forms are too 

weak to rule out the uncomputabil-
ity scenarios described by Cubitt et al.14 
and by Eisert et al.19 This is because the 
physical processes involved in these 
scenarios may, so far as we know, be 
Turing-computable; it is possible that 
each process can be simulated by a Tur-
ing machine, to any required degree 
of accuracy, and yet the answers to cer-
tain physical questions about the pro-
cesses are, in general, uncomputable. 
The situation is similar in the case of 
the universal Turing machine itself. The 
machine’s behavior (consisting of the 
physical actions of the read/write head) 
is always Turing-computable since it is 
produced by the Turing machine’s pro-
gram, yet the answers to some questions 
about the behavior (such as whether or 
not the machine halts given certain in-
puts) are not computable. 

Nevertheless, bold forms (such as 
CTDW) are interesting empirical hy-
potheses in their own right and the 
world might confute them. For in-
stance, CTDW fails in the wave-equa-
tion countermodel due to Pour-El and 
Richards34 where the mapping between 
the wave equation’s “inputs” and “out-
puts” is not a Turing-computable (real) 
function; although, as noted earlier, the 
physicality of this countermodel can 
readily be challenged. We discuss some 
other potential countermodels later in 
the article, but turn first to what Picci-
nini termed “modest” versions of the 
thesis. 

Modest versions maintain in es-
sence that every physical computing 
process is Turing-computable; for two 
detailed formulations, see Gandy20 and 
Copeland.8 Even if CTT-P and CTDW 
are in general false, the behavior of the 
subset of physical systems that are ap-
propriately described as computing sys-
tems may nevertheless be bounded by 
Turing-computability. An illustration of 
the difference between modest versions 
on the one hand and CTT-P and CTDW 
on the other is given by the fact that the 
wave-equation example is not a counter-
model to the modest thesis, assuming, 
as seems reasonable, that the physical 
dynamics described by the equation do 
not constitute a computing process. 

Here, we formulate a modest version 
of the physical Church-Turing thesis we 
call the “Physical Computation” thesis, 
then turn to the question of whether it 
is true. 

spectral gap problem is algorithmically 
undecidable: There cannot exist any al-
gorithm that, given a description of the 
local interactions, determines whether 
the resultant model is gapped or gap-
less.” Cubitt et al. also said this is the 
“first undecidability result for a major 
physics problem that people would re-
ally try to solve.” 

The spectral gap, an important deter-
minant of a material’s properties, refers 
to the energy spectrum immediately 
above the ground-energy level of a quan-
tum many-body system, assuming a 
well-defined least-energy level of the sys-
tem exists; the system is said to be “gap-
less” if this spectrum is continuous and 
“gapped” if there is a well-defined next-
least energy level. The spectral gap prob-
lem for a quantum many-body system is 
the problem of determining whether the 
system is gapped or gapless, given the fi-
nite matrices (at most three) describing 
the local interactions of the system. 

In their proof, Cubitt et al.14 encoded 
the halting problem in the spectral gap 
problem, showing the latter is at least as 
hard as the former. The proof involves 
an infinite family of two-dimensional 
lattices of atoms. But they pointed out 
their result also applies to finite systems 
whose size increases, saying, “Not only 
can the lattice size at which the system 
switches from gapless to gapped be arbi-
trarily large, the threshold at which this 
transition occurs is uncomputable.” 
Their proof offers an interesting coun-
termodel to CTT-P, involving a physical-
ly relevant example of a finite system of 
increasing size. There exists no effective 
method for extrapolating the system’s 
future behavior from (complete descrip-
tions of) its current and past states. 

It is debatable whether any of these 
quantum models correspond to real-
world quantum systems. Cubitt et al.14 

Relationships between the three physical computability theses: CTT-P, CTDW, and CTT-P-C.

Physical computability theses

super-bold

bold

modest

CTT-P

CTDW

CTTP-P-C

Total Physical Computability Thesis

Church-Turing-Deutsch-Wolfram Thesis

Physical Computation Thesis
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nal will have been received by TO before 
time t. So TO will fall into the black hole 
with 1 in its output cell if TE halted and 
0 if TE never halted. Fortunately, TO can 
escape annihilation if its trajectory is 
carefully chosen in advance, says Néme-
ti; the rotational forces of the Kerr hole 
counterbalance the gravitational forces 
that would otherwise “spaghettify” TO. 
TO thus emerges unscathed from the 
hole and goes on to use the computed 
value of the halting function in further 
computations. 

Németi and colleagues emphasize 
their machine is physical in the sense 
it is “not in conflict with presently ac-
cepted scientific principles” and, in par-
ticular, “the principles of quantum me-
chanics are not violated.”2 They suggest 
humans might “even build” a relativistic 
computer “sometime in the future.”2 
This is, of course, highly controversial. 
However, our point is that Németi’s the-
oretical countermodel, which counters 
not only CTT-P-C but also CTT-P and 
CTDW, helps underscore that the “phys-
ical version of the Church-Turing thesis” 
is quite independent of CTT-O, since the 
countermodel stands whether or not 
CTT-O is endorsed. We next reconsider 
CTT-A. 

CTT-A and Computation in the Broad 
The continuing expansion of the con-
cept of an algorithm is akin to the exten-
sion of the concept of number from inte-
gers to signed integers to rational, real, 
and complex numbers. Even the con-
cept of human computation underwent 
an expansion; before 1936, computation 
was conceived of in terms of total func-
tions, and it was Kleene in 1938 who ex-
plicitly extended the conception to also 
cover partial functions. 

Gurevich argued in 2012 that formal 
methods cannot capture the algorithm 
concept in its full generality due to the 
concept’s open-ended nature; at best, 
formal methods provide treatments of 
“strata of algorithms” that “have ma-
tured enough to support rigorous defi-
nitions.”22 An important question for 
computer science is whether CTT-A is 
a reasonable constraint on the growth 
of new strata. Perhaps not. In 1982, 
Jon Doyle18 suggested equilibrating 
systems with discrete spectra (such as 
molecules and other quantum many-
body systems) illustrate a concept of 
effectiveness that is broader than the 

Physical Computation Thesis 
This form of the thesis maintains that 
physical computation is bounded by 
Turing-computability. 

Physical computation thesis (CTT-P-C). 
Every function computed by any physi-
cal computing system is Turing-com-
putable. 

Is CTT-P-C true? As with the stronger 
physical computability theses, it seems 
too early to say. CTT-P-C could be false 
only if CTT-P and CTDW turn out to be 
false, since each of them entails CTT-P-
C (see the figure here, which outlines the 
relationships among CTT-P, CTDW, and 
CTT-P-C). If all physical computation 
is effective in the 1930s sense of Turing 
and Church, then CTT-P-C is certainly 
true. If, however, the door is open to a 
broadened sense of computation, where 
physical computation is not necessarily 
effective in the sense of being bounded 
by Turing-computability, then CTT-P-C 
makes a substantive claim. 

There is, in fact, heated debate 
among computer scientists and phi-
losophers about what counts as physi-
cal computation. Moreover, a number 
of attempts have sought to describe a 
broadened sense of computation in 
which computation is not bounded 
by Turing-computability; see, for ex-
ample, Copeland.6 Computing ma-
chines that compute “beyond the Tur-
ing limit” are known collectively as 
“hypercomputers,” a term introduced 
in Copeland and Proudfoot.11 Some of 
the most thought-provoking examples 
of notional machines that compute in 
the broad sense are called “supertask” 
machines. These “Zeno computers” 
squeeze infinitely many computational 
steps into a finite span of time. Exam-
ples include accelerating machines,7,12 
shrinking machines, and the intrigu-
ing relativistic computers described in 
the next section. 

Notional machines all constitute 
rather theoretical countermodels to 
CTT-P-C, so long as it is agreed that 
they compute in a broadened sense, but 
none has been shown to be physically 
realistic, although, as we explain, rela-
tivistic computers come close. In short, 
the truth or falsity of CTT-P-C remains 
unsettled. 

Relativistic Computation 
Relativistic machines operate in space-
time structures with the property that 

the entire endless lifetime of one com-
ponent of the machine is included in 
the finite chronological past of another 
component, called “the observer.” The 
first component could thus carry out an 
infinite computation (such as calculat-
ing every digit of π) in what is, from the 
observer’s point of view, a finite times-
pan of, say, one hour. (Such machines 
are in accord with Einstein’s general the-
ory of relativity, hence the term “relativ-
istic.”) Examples of relativistic compu-
tation have been detailed by Pitowsky, 
Mark Hogarth, and Istvan Németi. 

In this section we outline a relativistic 
machine RM consisting of a pair of com-
municating Turing machines, TE and 
TO, in relative motion. TE is a universal 
machine, and TO is the observer. RM is 
able to compute the halting function, in 
a broad sense of computation. Speaking 
of computation here seems appropriate, 
since RM consists of nothing but two 
communicating Turing machines. 

Here is how RM works. When the in-
put (m,n), asking whether the mth Tur-
ing machine (in some enumeration 
of the Turing machines) halts or not 
when started on input n, enters TO, TO 
first prints 0 (meaning “never halts”) 
in its designated output cell and then 
transmits (m,n) to TE. TE simulates the 
computation performed by the mth Tur-
ing machine when started on input 
n and sends a signal back to TO if and 
only if the simulation terminates. If 
TO receives a signal from TE, TO deletes 
the 0 it previously wrote in its output 
cell and writes 1 in its place (meaning 
“halts”). After one hour, TO’s output 
cell shows 1 if the mth Turing machine 
halts on input n and shows 0 if the mth 
machine does not halt on n. 

The most physically realistic version 
of this setup to date is due to Németi and 
his collaborators in Budapest. TE, an or-
dinary computer, remains on Earth, 
while the observer TO travels toward and 
enters a slowly rotating Kerr black hole. 
TO approaches the outer event horizon, 
a bubble-like hypersurface surrounding 
the black hole. Németi theorized that 
the closer TO gets to the event horizon, 
the faster TE’s clock runs relative to TO 
due to Einsteinian gravitational time di-
lation, and this speeding up continues 
with no upper limit. TO motion proceeds 
until, relative to a time t on TO clock, the 
entire span of TE’s computing is over. 
If any signal was emitted by TE, the sig-
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Conclusion 
In the computational literature the term 
“Church-Turing thesis” is applied to a 
variety of different propositions usu-
ally not equivalent to the original the-
sis—CTT-O; some even go far beyond 
anything either Church or Turing wrote. 
Several but not all are fundamental as-
sumptions of computer science. Others 
(such as the various physical comput-
ability theses we have discussed) are im-
portant in the philosophy of computing 
and the philosophy of physics but are 
highly contentious; indeed, the label 
“Church-Turing thesis” should not mis-
lead computer scientists or anyone else 
into thinking they are established fact 
or even that Church or Turing endorsed 
them. 	
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classical concept, saying, “[E]quilibrat-
ing can be so easily, reproducibly, and 
mindlessly accomplished” that we may 
“take the operation of equilibrating as 
an effective one,” even if “the functions 
computable in principle given Turing’s 
operations and equilibrating include 
non-recursive functions.” 

Over the years, there have been sever-
al departures from Turing’s 1936 analy-
sis, as the needs of computer science 
led to a broadening of the algorithm 
concept. For example, Turing’s fourth 
axiom, which bounds the number of 
parts of a system that can be changed 
simultaneously, became irrelevant 
when the algorithm concept broadened 
to cover parallel computations. The fu-
ture computational landscape might 
conceivably include more extensive re-
visions of the concept, if, for example, 
physicists were to discover that hard-
ware effective in Doyle’s extended sense 
is a realistic possibility. 

If such hardware were to be devel-
oped—hardware in which operations 
are effective in the sense of being “eas-
ily, reproducibly, and mindlessly ac-
complished” but not bounded by Turing 
computability—then would the appro-
priate response by computer scientists 
be to free the algorithm concept from 
CTT-A? Or should CTT-A remain as a 
constraint on algorithms, with instead 
two different species of computation be-
ing recognized, called, say, algorithmic 
computation and non-algorithmic com-
putation? Not much rides on a word, but 
we note we prefer “effective computa-
tion” for computation that is bounded 
by Turing computability and “neo-ef-
fective computation” for computation 
that is effective in Doyle’s sense and not 
bounded by Turing computability, with 
“neo” indicating a new concept related 
to an older one. 

The numerous examples of notional 
“hypercomputers” (see Copeland9 for 
a review) prompt similar questions. In-
terestingly, a study of the expanding lit-
erature about the concept of an infinite-
time Turing machine, introduced by 
Joel Hamkins and Andy Lewis in 2000, 
shows that a number of computer sci-
entists are prepared to describe the in-
finite-time machine as computing the 
halting function. Perhaps this indicates 
the concept of computation is already 
in the process of bifurcating into “effec-
tive” and “neo-effective” computation. 


