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Physical Computability Theses 

B. Jack Copeland & Oron Shagrir 

 

Abstract: The Church-Turing thesis asserts that every effectively computable function is Turing 
computable. On the other hand, the physical Church-Turing Thesis (PCTT) concerns the 
computational power of physical systems, regardless of whether these perform effective 
computations. We distinguish three variants of PCTT – modest, bold and super-bold – and 
examine some objections to each. We highlight Itamar Pitowsky’s contributions to the 
formulation of these three variants of PCTT, and discuss his insightful remarks regarding their 
validity. The distinction between the modest and bold variants was originally advanced by 
Piccinini (2011). The modest variant concerns the behavior of physical computing systems, 
while the bold variant is about the behavior of physical systems more generally. Both say that 
this behavior, when formulated in terms of some mathematical function, is Turing computable. 
We distinguish these two variants from a third – the super-bold variant – concerning 
decidability questions about the behavior of physical systems. This says, roughly, that every 
physical aspect of the behavior of physical systems – e.g., stability, periodicity – is decidable 
(i.e. Turing computable). We then examine some potential challenges to these three variants, 
drawn from relativity theory, quantum mechanics, and elsewhere. We conclude that all three 
variants are best viewed as open empirical hypotheses. 

 

1. Introduction 

The physical Church-Turing Thesis (PCTT) limits the behavior of physical systems to Turing 

computability. We will distinguish several versions of PCTT, and will discuss some possible 

empirical considerations against these. We give special emphasis to Itamar Pitowsky’s 

contributions to the formulation of the physical Church-Turing Thesis, and to his remarks 

concerning its validity. 

The important distinction between 'modest' and 'bold' variants of PCTT was noted by 

Gualtiero Piccinini (2011). Modest variants concern only computing systems, while bold variants 

concern the behavior of physical systems without restriction. The literature contains numerous 

examples of both modest and bold formulations of PCTT; e.g., bold formulations appear in 
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Deutsch (1985) and Wolfram (1985), and modest formulations in Gandy (1980) and Copeland 

(2000). 

We will distinguish the modest and bold variants from a third variant of PCTT, which we 

term "super-bold". This variant goes beyond the other two in including decidability questions 

within its scope, saying, roughly, that every physical aspect of the behavior of any physical 

system – e.g., stability, periodicity – is Turing computable. 

Once the distinction between the modest, bold, and super-bold variants is drawn, we will 

give three different formulations of PCTT: a modest version PCTT-M, a bold version PCTT-B, and 

a super-bold version PCTT-S. We will then review some potential challenges to these three 

versions, drawn from relativity theory, quantum mechanics, and elsewhere. We will conclude 

that all three are to be viewed as open empirical hypotheses. 

2. Three physicality theses: Modest, Bold and Super-Bold 

The issue of whether every aspect of the physical world is Turing computable was raised by 

several authors in the 1960s and 1970s, and the topic rose to prominence in the mid-1980s. In 

1985, Stephan Wolfram formulated a thesis that he described as "a physical form of the 

Church-Turing hypothesis": this says that the universal Turing machine can simulate any 

physical system (1985: 735, 738). Wolfram put it as follows: “[U]niversal computers are as 

powerful in their computational capacities as any physically realizable system can be, so that 

they can simulate any physical system” (Wolfram 1985: 735). In the same year David Deutsch 

(who laid the foundations of quantum computation) formulated a principle that he also called 

"the physical version of the Church-Turing principle" (Deutsch 1985: 99). Other formulations 

were advanced by Earman (1986), Pour-El and Richards (1989), Blum, Cucker, Shub and Smale 

(1998) and others.  

Pitowsky also formulated a version of CTTP, in his paper “The Physical Church Thesis and 

Physical Computational Complexity” (Pitowsky 1990), based on his 1987 lecture in the Eighth 
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Jerusalem Philosophical Encounter Workshop.1 He said: “Wolfram has recently proposed a 

thesis — ‘a physical form of the Church-Turing thesis’ — which maintains, among other things, 

that no non-recursive function is physically computable” (1990: 86). The “other things” pertain 

to computational complexity: Pitowsky interpreted Wolfram as also claiming that the universal 

Turing machine efficiently simulates physical processes, and Pitowsky challenged this further 

contention (see also Pitowsky 1996; 2002). We will not discuss issues of computational 

complexity here (but see Copeland and Shagrir 2019 for some relevant discussion of the so-

called "Extended Church-Turing Thesis"). 

Many have confused PCTT with the original Church-Turing Thesis, formulated by Alonzo 

Church (1936) and Alan Turing (1936); see Copeland (2017) for discussion of misunderstandings 

of the original thesis. It is now becoming better understood that, by ‘computation’, both Church 

and Turing meant a certain human activity, numerical computation; in their day, computation 

was done by rote-workers called "computers", or, more rarely, "computors" (see e.g. Turing 

1947: 387, 391).Pitowsky correctly emphasized that PCTT and the original form of the thesis are 

very different:  

It should be noted that Wolfram's contention has nothing to do with the original 

Church thesis. By ‘every computable function is recursive,’ Church meant that 

the best analysis of our pre-analytic notion of ‘computation’ is provided by the 

precise notion of recursiveness. Indeed one sometimes refers to Church's thesis 

as ‘empirical,’ but the meaning of that statement, too, has nothing to do with 

physics. (Pitowsky 1990: 86) 

We will use the term physical to refer to systems whose operations are in accord with 

the actual laws of nature. These include not only actually existing systems, but also idealized 

physical systems (systems that operate in some idealized conditions), and physically possible 

systems that do not actually exist, but that could exist, or will exist, or did exist, e.g., in the 

                                                           
1 Some papers from the Workshop were published in 1990, in a special volume of Iyyun. The volume also contains 
papers by Avishai Margalit, Charles Parsons, Warren Goldfarb, William Tait, and Mark Steiner. 
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universe's first moments. (Of course, there is no consensus about exactly what counts as an 

idealized or possible physical system, but this is not our concern here.) 

We start by formulating a modest version of PCTT: 

Modest Physical Church-Turing Thesis (PCTT-M) Every function computed by any 
physical computing system is Turing computable. 

The functions referred to need not necessarily be defined over discrete values (e.g., integers). 

Many physical systems presumably operate on real-valued magnitudes; and the same is true of 

physical computers, e.g., analog computers. The nervous system too might have analog 

computing components. All this requires consideration of computability over the reals. The 

extension of Turing computability to real-valued domains (or non-denumerable domains more 

generally) was initiated by Turing, who talked about real computable numbers in his (1936). 

Definitions of real-valued computable functions have been provided by Grzegorczyk (1955, 

1957), Lacombe (1955), Mazur (1963), Pour-El (1974), Pour-El and Richards (1989), Blum et al. 

(1988), and others. The definitions are related to one another but are not equivalent. The 

central idea behind the definitions is that a universal Turing machine can approximate (or 

simulate) the values of a function over the reals, to any degree of accuracy. We describe one of 

the definitions in Section 4.  

Bold theses, on the other hand, omit the restriction to computing systems: they concern 

all (finite) physical systems, whether computing systems or not. Piccinini emphasized, correctly, 

that the bold versions proposed by different writers are often "logically independent of one 

another", and exhibit "lack of confluence" (2011: 747-748). The following bold thesis is based 

on the theses put forward independently by Wolfram and Deutsch (Wolfram 1985, Deutsch 

1985):  

Bold Physical Church-Turing Thesis (PCTT-B) Every finite physical system can be 
simulated to any specified degree of accuracy by a universal Turing machine. 

Pitowsky in fact interpreted Wolfram as advancing a modest version of the thesis, 

namely “that no non-recursive function is physically computable” (1990: 86). However, this is 
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because Pitowsky was treating every physical process as computation; he said, for example: 

“According to this rather simple picture, the planets in their orbits may be conceived as 

‘performing computations’” (1990: 84). Under this assumption, according to which all physical 

processes are computing processes, there is no difference at all between modest and bold 

versions. Piccinini, on the other hand, sensibly distinguished between computational and non-

computational physical processes; he took it that the planets in their orbits do not perform 

computations. Against the backdrop of this distinction, both Wolfram's formulation and 

Deutsch's formulation are bold: they concern physical systems in general and not just 

computing systems. 

In a recent paper, we introduced a new, stronger, form of PCTT, the "super-bold" form, 

here named PCTT-S (Copeland, Shagrir and Sprevak 2018). (The entailments between PCTT-S 

and PCTT-B and PCTT-M are: PCTT-S entails PCTT-B, and, since PCTT-B entails PCTT-M, PCTT-S 

also entails PCTT-M.) Unlike bold versions, the super-bold form concerns not only the ability of 

the universal Turing machine to simulate the behavior of physical systems (to any required 

degree of precision), but additionally concerns decidability questions about this behavior, 

questions that go beyond the simulation (or prediction) of behavior. Pitowsky (1996) provided 

some instructive examples of yes/no questions that reach beyond the simulation or prediction 

of behavior: 

There are, however, questions about the future that do not involve any specific time but 

refer to all the future. For example: ‘Is the solar system stable?’, ‘Is the motion of a 

given system, in a known initial state, periodic?’ These are typical questions asked by 

physicists and involve (unbounded) quantification over time. Thus, the question of 

periodicity is: ‘Does there exist some T such that for all times t, xi(T+ t) = xi(t) for i = 1, 2, . 

. . . n? Similarly the question concerning stability is: ‘Does there exist some D such that 

for all times t the maximal distance between the particles does not exceed D?’. (1996: 

163) 

The physical processes involved in these scenarios – the motion and stability of physical 

systems – may (so far as we know at present) be Turing computable, in the sense that the 

motions of the planets may admit of simulation by a Turing machine, to any required degree of 

accuracy. (Another way to put this is that possibly a Turing machine could be used to predict 
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the locations of the planets at every specific moment.) Yet the answers to certain physical 

questions about physical systems – e.g., whether (under ideal conditions) the system's motion 

eventually terminates – may nevertheless be uncomputable. The situation is similar in the case 

of the universal Turing machine itself: the machine's behavior (consisting of the physical actions 

of the read/write head) is always Turing computable in the sense under discussion, since the 

behavior is produced by the Turing machine's program; yet the answers to some yes/no 

questions about the behavior, such as whether or not the machine halts given certain inputs, 

are not Turing computable. Undecidable questions also arise concerning the dynamics of 

cellular automata and many other idealized physical systems. 

We express this form of the physical thesis as follows: 

Super-Bold Physical Church-Turing Thesis (PCTT-S): Every physical aspect of the 
behavior of any physical system is Turing computable (decidable). 

Are these three physical versions of the Church-Turing Thesis true, or even well-evidenced? 

We discuss the modest version first. 

3. Challenging the modest thesis: Relativistic computation 

There have been several attempts to cook up idealized physical machines able to compute 

functions that no Turing machine can compute. Perhaps the most interesting of these are 

"supertask" machines—machines that complete infinitely many computational steps in a finite 

span of time. Among such machines are accelerating machines (Copeland 1998, Copeland and 

Shagrir 2011), shrinking machines (Davies 2001), and relativistic machines (Pitowsky 1990, 

Hogarth 1994, Andréka et al. 2009). Pitowsky proposed a relativistic machine in the 1987 

lecture mentioned earlier. At the same time, Istvan Németi also proposed a relativistic 

machine, which we outline below.  

The fundamental idea behind relativistic machines is intriguing: these machines operate 

in spacetime structures with the property that the entire endless lifetime of one participant is 

included in the finite chronological past of a second participant—sometimes called “the 

observer”. Thus the first participant could carry out an endless computation, such as calculating 
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each digit of , in what is a finite timespan from the observer's point of view, say one hour. 

Pitowsky described a setup with extreme acceleration that nevertheless functions in 

accordance with Special Relativity. His example is of a mathematician “dying to know whether 

Fermat's conjecture is true or false” (the conjecture was unproved back then). The 

mathematician takes a trip in a satellite orbiting the earth, while his students (and then their 

students, and then their students...) “examine Fermat's conjecture one case after another, that 

is, they take quadruples of natural numbers (x,y,z,n), with n≥3, and check on a conventional 

computer whether xn + yn = zn” (Pitowsky 1990: 83). 

Pitowsky suggested that similar set-ups could be replicated by spacetime structures in 

General Relativity (now sometimes called Malament-Hogarth spacetimes). Mark Hogarth (1994) 

pointed out the non-recursive computational powers of devices operating in these spacetimes. 

More recently, Etesi and Németi (2002), Hogarth (2004), Welch (2008), Button (2009), and 

Barrett and Aitken (2010) have further explored the computational powers of such devices, 

within and beyond the arithmetical hierarchy. In what follows, we describe a relativistic 

machine RM that arguably computes the halting function (we follow Shagrir and Pitowsky 

(2003)).  

RM consists of a pair of communicating Turing machines TA and TB: TA, the observer, is in 

motion relative to TB, a universal machine. When the input (m,n)—asking whether the mth 

Turing machine (in some enumeration of the Turing machines) halts or not, when started on 

input n—enters TA, TA first prints 0 (meaning "never halts") in its designated output cell and 

then transmits (m,n) to TB. TB simulates the computation performed by the mth Turing machine 

when started on input n and sends a signal back to TA if and only if the simulation terminates. If 

TA receives a signal from TB, it deletes the 0 it previously wrote in its output cell and writes 1 

there instead (meaning "halts"). After one hour, TA's output cell shows 1 if the mth Turing 

machine halts on input n and shows 0 if the mth machine does not halt on n. Since RM is able to 

do this for any input pair (m,n), RM will deliver any desired value of the halting function. There 

is further discussion of RM in Copeland and Shagrir (2007). 
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Here we turn to the question of whether RM is a counterexample to PCTT-M. This 

depends on whether RM is physical and on whether it really computes the halting function. 

First, is RM physical? Németi and his colleagues provide the most physically realistic 

construction, locating machines like RM in setups that include huge slowly rotating Kerr-type 

black holes (Andréka et al. 2018). They emphasize that the computation is physical in the sense 

that “the principles of quantum mechanics are not violated” and RM is “not in conflict with 

presently accepted scientific principles”; and they suggest that humans might “even build” a 

relativistic computer “sometime in the future” (Andréka, Németi and Németi 2009: 501). 

Naturally, all this is controversial. John Earman and John Norton pointed out that 

communication between the participants is not trivially achieved, due to extreme blue-shift 

effects, including the possibility of the signal destroying the receiving participant (Earman and 

Norton 1993). Subsequently, several potential solutions to this signaling problem have been 

proposed; see Etesi and Németi (2002), Németi and Dávid (2006) and Andréka et al. (2009: 

508–9). An additional potential objection is that infinitary computation requires infinite 

memory, and so requires infinite computation space (Pitowsky 1990: 84). Another way of 

putting the objection is that the infinitary computation requires an unbounded amount of 

matter-energy, which seems to violate the basic principles of quantum gravity (Aaronson 

2005)—although Németi and Dávid (2006) offer a proposed solution to this problem. We return 

to the infinite memory problem in a later section. 

Second, does RM compute the halting function? The answer depends on what is included 

under the heading “physical computation”. We cannot even summarize here the diverse array 

of competing accounts of physical computation found in the current literature. But we can say 

that RM computes in the senses of “compute” staked out by several of these accounts: the 

semantic account (Shagrir 2006, Sprevak 2010), the mechanistic account (Copeland 2000, 

Miłkowski 2013, Fresco 2014, Piccinini 2015), the causal account (Chalmers 2011), and the BCC 

(broad conception of computation) account (Copeland 1997). According to all these accounts, 

RM is a counterexample to the modest thesis if RM is physical; at the very least, RM seems to 

show that non-Turing physical computation is logically possible. However, if computation is 

construed as the execution of an algorithm in the classical sense, then RM does not compute, 
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since this requires some form of Turing-machine determinism. The classical conception of an 

algorithm does not accommodate the limit stages found in relativistic computation. 

4. Challenging the bold thesis 

PCTT-B says that the behavior of every physical system can be simulated (to any required 

degree of precision) by a Turing machine. Speculation that there may be physical processes 

whose behavior cannot be calculated by the universal Turing machine stretches back over 

several decades (see Copeland 2002 for a survey). The focus has been not so much on idealized 

constructions such as RM (which, if physical, is a counterexample to PCTT-B, as well as PCTT-M, 

since PCTT-B entails PCTT-M); rather, the focus has been on whether the mathematical 

equations governing the dynamics of physical systems are or are not Turing computable.  Early 

papers by Scarpellini (1963), Komar (1964), and Kreisel (1965, 1967) raised this question. Georg 

Kreisel stated "There is no evidence that even present day quantum theory is a mechanistic, i.e. 

recursive theory in the sense that a recursively described system has recursive behavior" (1967: 

270). Roger Penrose (1989; 1994) conjectured that some mathematical insights are non-

recursive. Assuming that this mathematical thinking is carried out by some physical processes in 

the brain, the bold thesis must then be false. But Penrose’s conjecture is highly controversial. 

 Another challenge to the bold thesis derives from the postulate of genuine physical 

randomness (as opposed to quasi-randomness). Church showed in 1940 that any infinite, 

genuinely random sequence is uncomputable (Church 1940: 134-135). Some have argued that, 

under certain conditions relating to unboundedness, PCTT-B is false in a universe containing a 

random element (to use Turing's term from his 1950: 445; see also Turing 1948: 416). A random 

element is a system that generates random sequences of bits. It is argued that if physical 

systems include systems capable of producing unboundedly many digits of an infinite random 

binary sequence, then PCTT-B is false (Copeland 2004, 2000; Calude et al. 2008, 2010; Piccinini 

2011). One of us, Copeland, also argues that (again under unboundedness conditions) a digital 

computer using a random element forms a counterexample to PCTT-M (Copeland 2002). 

However, the latter claim, unlike the corresponding claim concerning PCTT-B, depends crucially 

upon one's account of computation — Shagrir denies that a digital computer with a random 
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element computes the generated uncomputable sequences. In any case, though, it is an open 

question whether genuine random elements, able to generate unboundedly many digits of 

random binary sequences, exist in the physical universe, or physically could exist. 

A further challenge to the bold thesis was formulated by Piccinini (2011). One of his 

argument's premises is: "if our physical theories are correct, most transformations of the 

relevant physical properties are transformations of Turing-uncomputable quantities into one 

another" (2011: 748). Another premise is: "a transformation of one Turing-uncomputable value 

into another Turing-uncomputable value is certainly a Turing-uncomputable operation" (2011: 

748-749). The observation that in a continuous physical world, not all arithmetical operations 

are Turing computable is certainly correct (Copeland 1997). Where x and y are uncomputable 

real numbers, x + y is in general not Turing computable, since the inputs x and y cannot be 

inscribed on a Turing machine's tape (except in the special case where x and y have been given 

proper names, e.g., where the halting number is named ""—but since there are only countably 

many proper names, most Turing uncomputable real numbers must remain nameless). If, 

therefore, the bold thesis is simply that “Any physical process is Turing computable” (Piccinini 

2011: 746), then the thesis is indeed false in a continuous universe; as Piccinini argued, a Turing 

machine can receive at most a denumerable number of different inputs, and so the falsity of 

the bold thesis results from the cardinality gap between the physical functions, defined over 

non-denumerable domains, and the Turing computable functions, defined over denumerable 

domains.  

However, this simple argument shows merely that Piccinini's version of the bold thesis is 

of little interest if the physical world is assumed to be continuous. Our own version of the thesis 

is sensitive to these considerations and requires only that physical processes be simulable to 

any specified degree of accuracy. Our version of the thesis is responsive to an account of 

(Turing machine) computation over the reals according to which—contra Piccinini's second 

premiss—the transformation of one Turing uncomputable value into another Turing 

uncomputable value can be a (Turing-machine) computable operation. Relative to this account, 

the real-valued functions of plus, identity, and inverse are computable by Turing machine, even 
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though these functions sometimes map Turing uncomputable inputs to Turing uncomputable 

outputs: the definitions of real computable functions impose a continuity constraint, enabling 

the approximation (simulation) of uncomputable arguments and values. There are several (non-

equivalent) characterizations of this continuity constraint; for the purpose of illustration, we 

select the characterization given by Andrzej Grzegorczyk (1955, 1957), and we adapt the 

exposition of Earman (1986). 

We start with numbers: 

Definition 1: A sequence of rational numbers {xn} is said to be effectively computable if 

there exist three Turing computable functions (over N) a,b,c such that xn = (-

1)c(n)a(n)b(n). 

Definition 2: A real number r is said to be effectively computable if there is an effectively 

computable sequence of rational numbers that converges effectively to r. ('Converges 

effectively' means that there is an effectively computable function d over N such that |r 

- xn| < 12m whenever n ≥ d(m).) 

Now to functions:  

Definition 3: A function f is an effectively computable function over the reals if: 

(i) f is sequentially computable, i.e. for each effectively computable sequence {rn} of 

reals {f(rn)} is also effectively computable; 

(ii) f is effectively uniformly continuous on rational intervals, i.e. if {xn} is an effective 

enumeration of the rationals without repetitions then there is a three-place Turing 

computable function g such that |f(r) - f(r')| < 12k whenever xm < r, r' < xn  and |r - r'| < 

1g(m,n,k) for all r,r'  R and all m,n,k  N.  

(If we confine f to a closed and bounded interval with computable end points then the 
above definition simplifies: no enumeration is necessary and g is only a function of k.) 

Importantly, given that plus is effectively uniformly continuous on rational intervals, plus is a 

computable function, even though plus maps Turing uncomputable reals to Turing 

uncomputable reals. 
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It is interesting that, by and large, known physical laws give rise to functions over the 

reals that are computable in the sense just defined. A well-known exception was discovered by 

Marian Pour-El and Ian Richards (1981), who showed that the wave equation produces non-

computable sequences for some computable initial conditions (i.e., for some computable input 

sequences). In that respect, the wave equation violates condition (i) in the definition of an 

effectively computable function over the reals (Definition 3). Clearly, this exception forms a 

potential counterexample to (our version of) the bold thesis. 

However, this result of Pour-El and Richards is at the purely mathematical level, not the 

physical level. In his discussion of Pour-El and Richards, Pitowsky (1990) argued that their result 

does not refute the bold thesis, for two reasons: 

Firstly, the function f in the initial condition, though a recursive real function, is an 

extremely complex function. One can hardly expect such an initial condition to arise 

‘naturally’ in any real physical situation. Secondly, we deal with recursive real functions, 

and in physics we never get beyond a few decimal digits of accuracy anyway. (Pitowsky 

1990: 86-87) 

Nevertheless, the result does demonstrate that being recursive 

is not a natural physical property. Physical processes do not necessarily preserve it. 

(Pitowsky 1990: 87) 

Even if, in our world, the initial conditions envisaged in the Pour-El & Richards example do not 

occur, nevertheless these conditions could occur in some other physically possible world in 

which the wave equation holds, so showing, as Pitowsky said, that physical processes do not 

necessarily preserve recursiveness. 

5. Challenging the super-bold thesis 

We will turn next to PCTT-S. It might be objected that PCTT-S is immediately false, as may be 

shown by considering a universal Turing machine implemented as a physical system: many 

interesting questions about such a system are undecidable. Pitowsky (1996) describes one such 

construction, due to Moore (1990), in which a universal machine is realized in a moving particle 
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bouncing between parabolic and linear mirrors in a unit square. This system can certainly be 

simulated by a Turing machine (since it is a Turing machine). But there are nevertheless 

undecidable questions about its behavior:  

At this stage we can apply Turing’s theorem on the undecidability of the halting 

problem. It says: There is no algorithm to decide whether a universal Turing machine 

halts on a given input. Translating this assertion into physical language, it means that 

there is no algorithm to predict whether the particle ever enters the subset of the 

square corresponding to the halting state. This assertion is valid when we know the 

exact initial conditions with unbounded accuracy, or even with actually infinite accuracy. 

Therefore, to answer the question: ‘Is the particle ever going to reach this region of 

space?‘, Laplace’s Demon needs computational powers exceeding any algorithm. In 

other words, he needs to consult an oracle. (Pitowsky 1996: 171) 

Pitowsky further noted that many other yes/no questions about the system are 

computationally undecidable. In fact, it follows from Rice's theorem that “almost every 

conceivable question about the unbounded future of a universal Turing machine turns out to be 

computationally undecidable” (Pitowsky 1996: 171; see also Harel and Feldman 2004). Rice’s 

theorem says: any nontrivial property about the language recognized by a Turing machine is 

undecidable, where a property is nontrivial if at least one Turing machine has the property and 

at least one does not. 

However, the objection that PCTT-S is straight-out false can hardly be sustained. It 

would by no means be facile to implement a Turing machine, with its infinite tape, in a finite 

physical object. The assumption that the physical universe is able to supply an infinite memory 

tape is controversial. If the number of particles in the cosmos is finite, and each cell of the tape 

requires at least one particle for its implementation, then clearly the assumption of an infinite 

physical tape must be false. Against this, it might be pointed out that there are a number of 

well-known constructions for shoehorning an infinite amount of memory into a finite object. 

For example, a single strip of tape 1 metre long can be used: the first cell occupies the first half-

metre, the second cell the next quarter-metre, the third cell the next eighth of a metre, and so 

on. However, this observation does not help matters. Obviously, this construction can be 
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realized only in a universe whose physics allows for the infinite divisibility of the tape—again by 

no means an evidently true assumption. 

Another way to implement the Turing machine with its infinite tape is in the continuous 

(or rational) values of a physical magnitude, as described in Moore’s system. Assume that each 

(potential) configuration of the Turing machine is encoded in a (potentially infinite) sequence of 

0s and 1s. The goal now is to efficiently realize each sequence in a unique location of the 

particle in the (finite) unit square. Much like the example of the 1-metre strip of tape above, 

this realization can be achieved if we use potentially infinitely many different locations (x,y) 

within a unit square, where x and y are continuous (or rational) values between 0 and 1. This 

realization, however, requires that the (idealized) mirrors have the ability to bounce the 

particle, accurately, into potentially infinitely many different positions within the unit square. 

Moreover, if Laplace’s Demon wants to predict the future position of the particle after k rounds 

in the square unit, the Demon will have to be able to measure the differences between 

arbitrarily close positions. As Pitowsky notes: “[T]o predict the particle position with accuracy of 

1/2 the demon has to measure initial conditions with accuracy 2-(k+1). The ratio of final error to 

initial error is 2k, and growing exponentially with time k (measured by the number of rounds)” 

(1996: 167). This means that implementing a Turing machine in Moore’s system requires 

determining a particle's position with practically infinite precision (an accuracy of 2-(k+1) for 

unbounded k), and it is questionable whether this implementation is physically feasible. At any 

rate, the claim that this is physically feasible is, again, far from obvious. 

To summarize this discussion, PCTT-S hypothesizes in part that the universe is physically 

unable to supply an infinite amount of memory, since if PCTT-S is true, the resources for 

constructing a universal computing machine must be unavailable (the other necessary 

resources, aside from the infinite memory, being physically undemanding). This point helps 

illuminate the relationships between PCTT-S and PCTT-M. Returning to the discussion of the 

relativistic machine RM and the infinite memory problem raised in Section 3, it is clearly the 

case that, since RM requires infinite memory, PCTT-S rules out RM (and this is to be expected, 

since PCTT-M rules out RM, and PCTT-S entails PCTT-M). Nevertheless, the falsity of PCTT-S, and 
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the availability of infinite memory, would be insufficient to falsify PCTT-M—a universe that 

consists of nothing but a universal Turing machine with its infinite tape does not falsify PCTT-M. 

Thus, counterexamples to PCTT-M must postulate not only the availability of infinite memory 

but also additional physical principles of some sort, such as gravitational time dilation or 

unbounded acceleration or unbounded shrinking of components. Relativistic, accelerating and 

shrinking machines arguably invoke these principles successfully, and, hence, provide 

counterexamples to PCTT-M.  

Moving on to challenges to PCTT-S at the quantum level, there are undecidable 

questions concerning the behavior of quantum systems. In 1986, Robert Geroch and James 

Hartle argued that undecidable physical theories "should be no more unsettling to physics than 

has the existence of well-posed problems unsolvable by any algorithm have been to 

mathematics"; and they suggested such theories may be "forced upon us" in the quantum 

domain (Geroch and Hartle 1986: 534, 549). Arthur Komar raised "the issue of the macroscopic 

distinguishability of quantum states" in 1964, claiming there is no effective procedure "for 

determining whether two arbitrarily given physical states can be superposed to show 

interference effects" (Komar 1964: 543-544). More recently, Jens Eisert, Markus Müller and 

Christian Gogolin showed that "the very natural physical problem of determining whether 

certain outcome sequences cannot occur in repeated quantum measurements is undecidable, 

even though the same problem for classical measurements is readily decidable" (Eisert, Müller 

and Gogolin 2012: 260501-1). (This is an example of a problem that refers unboundedly to the 

future, but not to any specific time, as in Pitowsky's examples mentioned earlier.) Eisert, Müller 

and Gogolin went on to suggest that "a plethora of problems" in quantum many-body physics 

and quantum computing may be undecidable (2012: 260501-1 - 260501-4). 

Dramatically, a 2015 Nature article by Toby Cubitt, David Perez-Garcia, and Michael 

Wolf outlined a proof that "the spectral gap problem is algorithmically undecidable: there 

cannot exist any algorithm that, given a description of the local interactions, determines 

whether the resultant model is gapped or gapless" (Cubitt et al. 2015: 207). Cubitt describes 
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this as the "first undecidability result for a major physics problem that people would really try 

to solve" (in Castelvecchi 2015). 

The spectral gap, an important determinant of a material's properties, refers to the 

energy spectrum immediately above the ground energy level of a quantum many-body system 

(assuming that a well-defined least energy level of the system exists); the system is said to be 

gapless if this spectrum is continuous and gapped if there is a well-defined next least energy 

level. The spectral gap problem for a quantum many-body system is the problem of 

determining whether the system is gapped or gapless, given the finite matrices describing the 

local interactions of the system. 

In their proof, Cubitt et al. encode the halting problem in the spectral gap problem, so 

showing that the latter is at least as hard as the former. The proof involves an infinite family of 

2-dimensional lattices of atoms; but they point out that their result also applies to finite 

systems whose size increases: "Not only can the lattice size at which the system switches from 

gapless to gapped be arbitrarily large, the threshold at which this transition occurs is 

uncomputable" (Cubitt et al. 2015: 210-211). Their proof offers an interesting countermodel to 

the super-bold thesis. The countermodel involves a physically relevant example of a finite 

system, of increasing size, that lacks a Turing computable procedure for extrapolating future 

behavior from (complete descriptions of) its current and past states. 

It is debatable whether any of these quantum models matches the real quantum world. 

Cubitt et al. admit that the model used in their proof is highly artificial, saying "Whether the 

results can be extended to more natural models is yet to be determined" (Cubitt et al. 2015: 

211). There is also the question of whether the spectral gap problem could become computable 

when only local Hilbert spaces of realistically low dimensionality are considered. Nevertheless, 

these results are certainly suggestive. The super-bold thesis cannot be taken for granted—even 

in a finite quantum universe. 
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6. Conclusion 

We have distinguished three theses about physical computability, and have discussed some 

empirical evidence that might challenge these. Concerning the boldest versions, PCTT-B and 

PCTT-S, both are false if the physical universe permits infinite memory and genuine 

randomness. Even assuming that the physical universe is deterministic, the most that can be 

said for PCTT-B and PCTT-S is that, to date, there seems to be no decisive empirical evidence 

against them. PCTT-B and PCTT-S are both thoroughly empirical theses; but matters are more 

complex in the case of the modest thesis PCTT-M, since a conceptual issue also bears on the 

truth or falsity of this thesis (even in a universe containing genuine randomness)—namely, the 

difficult issue of what counts as physical computation. Our conclusion is that, at the present 

stage of physical enquiry, it is unknown whether any of the theses is true. 
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